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Abstract

The topic of this work is the biologically relevant fluid phase of phosphatidylcholine
lipid bilayers. A first goal is the determination of the average bilayer structure using
low-angle X-ray scattering from multilamellar lipid vesicles (MLVs). The MLVs are
smectic liquid crystals, for which interbilayer correlations decay algebraically. Con-
sequently, the smectic Bragg peaks have power low tails, with the exponent related
to the bilayer fluctuations. The analysis of such peaks requires good instrumental
resolution and a sophisticated (and equally good) scattering theory. The high reso-
lution is achieved at the F3 station at CHESS. The scattering theory is an improved
version of the modified Caillé theory being developed in our laboratory. Data fitting
gives the three pieces of information carried by the scattering peaks: position, am-
plitude, and power-law exponent. The position and the amplitude (form factor) are
used to determine the bilayer structure. The power-law exponent is converted into
mean square fluctuations in the interbilayer water spacing. This opens a new window
on interbilayer interactions which is the second goal of this work. The fundamental
issue of interbilayer interactions is addressed both experimentally and theoretically.
We obtain the interbilayer water spacing fluctuation o, as well as the traditional os-
motic pressure P, both as functions of the lamellar repeat spacing D and the aqueous
separation a. We show theoretically how to obtain the functional form of the fluctu-
ational free energy from the o data, which is then determined to within a factor that
depends upon the bending modulus, K,.. The resulting functional form determined
from experimental data has an exponential decay rather than the power law decay
that applies for hard confinement in the large a regime, thereby showing that a the-
ory of soft confinement is necessary. The existing theory of soft confinement predicts
an exponential decay, but with a smaller decay length Ay than we obtain. We then
use these results to analyze the osmotic pressure data in terms of the bending mod-
ulus K, and the interbilayer interactions consisting of van der Waals and hydration

interactions.
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Hepp(2)

area per lipid molecule

interbilayer water spacing at full hydration
interbilayer water spacing at zero bare pressure
compression parameter [erg/cm?]

lamellar spacing

lamellar spacing at full hydration

head-head distance across the lipid bilayer
bilayer thickness (volumetric definition)

water thickness (volumetric definition)

bilayer thickness (steric definition)

water spacing (steric definition)

hydrocarbon thickness (one chain)

headgroup thickness

Dy /2 — D¢
1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine
1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
1,2-dioleoyl-sn-glycero-3-phosphatidylcholine
egg phosphatidylcholine

free energy

form factor for peak h

continuous form factor

scattering correlation functions

Hamaker parameter

finite size factor

classical finite size factor

effective finite size factor

energy per thermal mode



discrete Hamiltonian

continuum Hamiltonian

scattering intensity for peak h

membrane area compressibility [dyn/cm)|
bending modulus [erg]

scattering domain size along the bilayer normal
average scattering domain size

fluid phase

gel phase

modified Caillé theory

number of bilayers in a scattering domain
number of waters per lipid

number of waters mixed with the lipid headgroup
number of electrons per headgroup

number of electrons per lipid molecule

osmotic pressure [dyn/cm?]

hydration parameter [dyn/cm?]

periodic boundary conditions
polyvinylpyrrolidone

thermal mode

scattering vector

scattering peak position

scattering factor for peak h from domain L
temperature

Fourier component of membrane displacement field
membrane displacement field

headgroup volume

lipid molecular volume

lipid specific volume [ml/g|

interaction between non-fluctuating membranes
partition function

pair correlation function between bilayers n and n + &

Caillé parameter

decay length of the hydration force

bilayer electron density profile

water electron density level

root mean square fluctuation in the water spacing
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Chapter 1

Introduction

1.1 Biomembranes

The molecular system studied in this work, namely the lipid bilayer, forms the funda-
mental structure of biomembranes (Voet and Voet, 1990). Life, as we know it, started
with the capacity of organic materials to self-aggregate and self-replicate. One key el-
ement is the aqueous property of repelling oily (hydrophobic) materials and attracting
polar (hydrophilic) groups. The appearance of molecules with both hydrophobic and
hydrophilic parts (amphiphiles), like the lipids, generated instabilities in the “primor-
dial soup”. The interaction energy between water and the amphiphiles is minimized
when the hydrophobic parts are not directly exposed to water as in Fig. 1.1. As
a consequence, the homogeneity of the primordial soup becomes disrupted by the

“special zones” created inside the molecular walls.
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Figure 1.1: Lipid aggregation due to the hydrophobicity of the hydrocarbon chains.

Understanding biomembranes requires the joint effort of researchers form many
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scientific fields including biology, chemistry and physics. Biomembranes are complex
macromolecular systems that provide the interface between the biological cell interior
and the surrounding environment and basically consist of a lipid matrix with pro-
tein inclusions. The proteins are big molecular aggregates with specific functions in
cellular processes. The lipid matrix provides the support and assists the proteins in
performing their functions. The functions of molecular aggregates are related to their
structure; it is the structure-function relation that is the object of modern molecu-
lar biology. For the biological physicist the corresponding relation is the one between
the structure and the interaction of macromolecular systems. The predictive power of
physics formalisms, once interactions are determined, can be put to work in designing

efficient biomaterials.

1.2 Lipid bilayers

A lipid membrane, stripped of protein insertions, is a challenging system for a physical
description based on first principles. A single lipid molecule consists of more than
100 atoms (see Fig. 1.2) and there are many thermally accessible degrees of freedom
for the whole membrane system. Evidently, and fortunately, only a reduced number
of degrees of freedom are relevant for a particular aspect of the lipid membrane. An

example is the mathematical description presented in Chapter 2 of this work.

(e]
I
cHy ‘(‘) O/ C\/\/\/\/\/\/\/\CH3
CHg ; N/\/Oi ‘Pi O\)vo\ C/\/\/\/\/\/\/\/CH3
CHj o I
° (e]
Phosphatidylcholine Glycerol Palmitoyl chains
headgroup backbone
Hydrophiic /' Hydrophobic

W
W

Figure 1.2: A DPPC molecule: C;oHgyOgPN, molecular weight = 734 g/mole. The
lines with no symbols represent (CH,),, chains.
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Lipid bilayers exhibit a number of thermal phases characterized by the molecular
packing in the bilayer plane (Small, 1986). As expected, lower temperature phases
are more ordered. For example, below T=41.4°C, the benchmark lipid, DPPC (1,2-
dipalmitoyl-sn-glycero-3-phosphatidylcholine), is arranged in an hexagonal lattice,
with the chains in all-trans conformations. At T=41.4°C the chains melt: a significant
number of C-C bonds become gauche. Because isolated single trans-gauche transitions
are prevented by steric interactions between chains (Nagle, 1973) this melting is a
cooperative process. As a result of melting, the order in the bilayer plane is lost,
therefore the high temperature phase is called the fluid phase. With the order being

lost, the determination of fluid phase properties becomes a challenge.

1.3 Goals

Chain ordered phases have been long studied owing to the well defined wide angle
scattering patterns. The most recent analysis performed in our laboratory is pre-
sented in Tristram-Nagle et al. (1993), Sun et al. (1994), Sun et al. (1996). Also in
our laboratory, a method to determine the fluid phase structure has been developed
and applied to DPPC bilayers (Nagle et al., 1996). In the present work, we will
first use similar methods to determine the fluid phase structure of three more lipids:
DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine), EPC (egg phosphatidyl-
choline) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) and second, we
will develop a method to determine the interbilayer interaction parameters, once the

structural parameters are known.

1.3.1 Structure

Before we proceed, let us first clarify the meaning of “structure determination”. Lipid
vesicles composed of single bilayers, such as the one shown in Fig. 1.1 are called unil-
amellar vesicles (UV). More often, though, lipid bilayers aggregate into multilamellar
vesicles (MLV) which are more suitable for X-ray studies due to stronger scattering.
Consider the sketch of two neighboring bilayers depicted in Fig.1.3. The first obvious
structural parameter is the lattice spacing D. Because of the many fluctuations in

the systems, we will always refer to average quantities; they are directly obtained
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from scattering experiments. More relevant than the D spacing itself is the partition
into a bilayer thickness Dp and a water thickness Dy,. Figure 1.3 shows two different

partitions such that
Dp + Dw = D = D3 + Dy, (1.1)

Figure 1.3: Sketch of two neighboring bilayers

The bilayer thickness includes contributions from both hydrophobic and hydrophilic
parts and so, the next refinement level is to partition the bilayer into a hydrocarbon
thickness D¢ and a headgroup thickness Dy. The most convenient quantity to con-
sider is the average area per lipid A at the liquid interface from which the various
thicknesses can be obtained (Nagle and Wiener, 1988).

Determination of the area per lipid A has been a challenge. For example, for
DPPC, one of the most studied lipids, literature uncertainties in the fluid phase (F)
area A% p. range from 56 to 734 (Nagle, 1993). This range is enormous, especially
when one considers that the DPPC gel G (i.e. Lg) phase has AGppn = 47.94° (Sun
et al., 1994); therefore, the effect of fluidization, namely, A" — A%, has an uncertainty
over 100% ! Such uncertainties are unacceptable when trying to set up simulations
at fixed area (Feller et al., 1997; Perera et al., 1997) or when trying to evaluate the
results of simulations in constant pressure ensembles (Tobias et al., 1997; Tieleman

et al., 1997).
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1.3.2 Fluctuations and interactions

For lipid membranes, as for biological systems in general, the average structure is only
part of the description. One also needs information about the fluctuations about this
average. This is especially true for bilayers because fluctuations play an important
role in the effective interactions that govern the system’s behavior.

In practice, interactions are determined by measuring the response of a system to
exterior stress. For example, one measures the elongation of a spring as a function of
the external pulling force in order to determine the spring constant. For the bilayer
stack one can vary the interbilayer water spacing Dy by applying an external osmotic
pressure P. The traditional method, introduced by Rand, Parsegian and co-workers
(Parsegian et al., 1979; Rand and Parsegian, 1989) uses water soluble polymers that,
while not mixing within the lipid bilayers, compete with them for the available water.

By integrating the curve P(Dy) one obtains the effective interbilayer interaction,

Vi (D) = — /ODW P(a) da. (1.2)

However, as Helfrich (1978) showed, this effective interaction also includes the con-

tribution from thermal fluctuations (undulations) of the bilayer,
‘/eff E}'ﬁ:‘/;)ow"e_"}?fl :%are_TSu, (13)

where T is the absolute temperature, S* is the entropy associated with the bilayer fluc-
tuations, and Vj,.. denotes the interaction between non-fluctuating flat membranes.
Fy is the contribution of fluctuations to the total free energy F'.

In the fluid phase, fluctuations are a significant part of the interbilayer interactions
(McIntosh and Simon, 1993) and therefore Vi, is not directly measurable. In this
work we show how the partitioning into Vj,,. and Fy; can be obtained if the traditional
osmotic pressure P(Dy,) data are supplemented with a measurement of interbilayer

mean square fluctuations o(Dyy).



Chapter 2

Liquid Crystal Description

2.1 Introduction

Ensembles of elongated molecules often exhibit anisotropic properties. In particular,
a stack of lipid membranes in the fluid phase can be described as a one-dimensional

array of two-dimensional fluids, as sketched in Fig. 2.1.

1D stack (crystal)

2D liquid

2D liquid

2D liquid

Figure 2.1: Smectic liquid crystal

It is well known (de Gennes, 1974) that dimensionality is crucial in the study of
order/disorder of a system. The order/disorder properties of a system are described
by the correlations between the system’s building blocks. In particular, crystalline
structures are described by positional correlation functions. In a true crystal, these
correlations are long range and permit the observation of well defined scattering
patterns. In fluids, the correlations are short range and most of the scattering is
diffuse. A typical X-ray pattern of a membrane stack in the fluid phase is diffuse

at wide scattering angles, indicating short intermolecular (intrabilayer) correlations,
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but still exhibits well defined periodic scattering peaks at low angles, corresponding
to longer interbilayer correlations. However, in smectic systems there is no true long
range order as in a crystal, but, as has been extensively shown, smectic systems have
quasi-long range correlations along the layer normal. As a consequence, the scattering
peaks have long power law tails (Caillé, 1972; Als-Nielsen et al., 1980; Safinya et al.,
1989; Roux and Safinya, 1988; Wack and Webb, 1989; Zhang et al., 1994). The
minimal description that accounts for this feature of the membrane stack is presented

in Fig. 2.2.

Figure 2.2: de Gennes - Caillé model of a stack of fluctuating membranes. The
bilayer thickness Dp is set to zero, therefore the repeat spacing D and the water
spacing Dy are equivalent.

In this model each membrane n is considered as a mathematical 2D surface (internal
structure is ignored; Dy = 0) whose points are represented by a displacement field
un(x,y) relative to the lattice points z, = nD. The set of variables u,(z, y) represent
the system fluctuations about the equilibrium position. The energetics are described

by the following effective Hamiltonian,

N—1 9 9 2
"= NlL2 /dx/dynz::0 BK (% + 8852n> + %B(unﬂ - un)Q} +V(Dw). (2.1)
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The first term accounts for the bending energy due to the membrane curvature. For
a flat membrane, u,(x,y) is a constant and the bending energy is zero. The bend-
ing modulus K. is assumed to be independent of the osmotic pressure, but it may
depend on temperature. The second term accounts for the fluctuational part of the
interbilayer interactions. The relative displacement u,.; — u, measures the change
in the nearest neighbor distance from its average value. The phenomenological pa-
rameter B is a function of the inter-membrane spacing Dy, or equivalently, it is a
function of the osmotic pressure. The last term in the Hamiltonian is independent of
the fluctuation variables u, (z, y) and gives the interaction energy between rigid mem-
branes as a function of the inter-membrane separation. Relative to this Hamiltonian,
the interactions are completely described if the constant K. and the two functions
B(Dw) and V(Dyy) are specified. None of these phenomenological quantities can be
entirely determined theoretically from first principles due to the internal complexity
of the membrane system.

For complex systems it is customary to employ “effective” theories (in which the
system is described at a satisfactory level) with a number of phenomenological param-
eters to be determined experimentally. The description used in this work differs in
two aspects from the original de Gennes - Caillé theory, in which the focus was mainly
on the fluctuational properties. These are best seen by comparing our expression in

Eq. 2.1 with the de Gennes Hamiltonian,

9 9 \ 2 2

Ho=[do [ay [a [%K(%Jrg—;j) +%B3 (%) ] (2.2)
with K = K./D and By = BD. First, the de Gennes model represents the membrane
stack as a continuum in all three spatial directions. Second, the bare interaction term
V(Dw) is ignored because, originally, the main focus was on fluctuational part only.
In the present work we are concerned with interbilayer interactions for which Eq. 2.1 is
a more appropriate model. The effective Hamiltonian introduced in Eq. 2.2 has been
shown to describe well the lamellar scattering from smectic systems, i.e. it captures
the behavior of the inter-lamellar correlation function (Caillé, 1972; Zhang et al.,
1994). Because the scattering peak shape is determined by the large scale behavior of
the lamellar system, the discrete (Eq. 2.1) and the continuum (Eq. 2.2) descriptions
are equivalent in the limit of large N (i.e. L > D), as shown in Appendix A.
Therefore, the Modified Caillé Theory (MCT) developed by Zhang et al. (1994)



Chapter 2. Liquid Crystal Description 9

starting from the Hamiltonian in Eq. 2.2 can be easily adapted to Eq. 2.1, as described
in Chapter 3.

2.2 Review of interaction studies

The bending constant K., is traditionally measured on unilamellar vesicles for which
interbilayer interactions are not present. Typical values for neutral lipids range be-
tween 0.5 — 2.0 - 1072 ergs (Faucon et al., 1989; Evans and Rawicz, 1990; Kummov
and Helfrich, 1991; Meleard et al., 1997).

The bare interaction V(Dy) is directly measurable from the osmotic pressure
curves if fluctuations are small, as for example in the gel phase. This kind of ex-
periment (Rand and Parsegian, 1991; McIntosh and Simon, 1993), together with
theoretical calculations of van der Waals interactions (Parsegian and Ninham, 1971;
Rand and Parsegian, 1989) suggest that the bare interaction is a sum of at least two

terms of the form

V. . — H 1 2 + = (2 3)
attraction = 99, \ D2 (Dy + Dg)? ' (Dw + 2Dp)? '
—Dw /A
Vrepulsion PpAe Wik, (24

The attractive term is the van der Waals interaction between two plates of thickness
Dp separated by distance Dy,. The interaction strength is measured by the Hamaker
parameter H, estimated to lie in the range 10~* — 107! erg (Rand and Parsegian,
1989; McIntosh and Simon, 1993; Parsegian, 1993). The origin of the repulsive term
is not yet completely understood. Different theories have been proposed (Marcelja
and Radic, 1976; Israelachvili and Wennerstrom, 1990) but it remains an outstanding
topic of fundamental interest and much uncertainty (Parsegian and Rand, 1991). In
this work we will accept the working hypothesis that there is a separable hydration
interaction with an exponential decay. From osmotic pressure measurements (for the
L, phase) A has been estimated to be in the range 1.4 — 2.4A (McIntosh and Simon,
1986; McIntosh and Simon, 1993; Rand and Parsegian, 1989). We note that McIntosh
and Simon tend to get the smaller values (1.4 — 1.7A) while Rand and Parsegian the
larger ones (2.0 — 2.4A). The numerical value of P, is tightly coupled to whether one

chooses the water spacing to be Dy or Dy, in Fig. 1.3. Using the Dy, convention
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yields P, = 5-10% erg/cm?® (McIntosh et al., 1987) and using the Dy convention just
rescales P, by exp[(Dw — Dj;)/A]; this is clearly not an essential difference. In this
work we will use the Dj;, convention in the interaction analysis.

The compression modulus B(Dy) is a very complex quantity. It accounts for
everything that is not contained in the bare interaction term. Theoretical attempts
try to relate B(Dy) to V(Dy ) but this is not an easy task. Helfrich (1978) analyzed
the case when there are no van der Waals or hydration interactions, only the steric
interactions caused by collision of bilayers. In this case, which will be called hard
confinement, Helfrich showed that there is another important repulsive force when
the bilayers are flexible. This force is due to the increased free energy from the
decrease in entropy that accompanies the reduction of out-of-plane fluctuations; such
reduction is required when the water spacing is reduced. Helfrich treated the steric
interactions by using an effective compression parameter B, as in Eq. 2.2 and found
that the steric free energy per unit area has the form
(kpT)?
K.D%,

fu =042 (2.5)

When a repulsive hydration force is present, the confinement of each membrane is
softer than for purely steric interactions because there are very few membrane col-
lisions. In this case, called soft confinement, it has been proposed (Sornette and
Ostrowsky, 1986) that the fluctuation free energy in Eq. 2.5 should be modified and
a formula involving an exponential with decay length 2,

_ mkgT P/ —Dw /22
fU2—2 3 K, € )

(2.6)
has been offered (Evans and Needham, 1987). In a more recent theory (Podgornik
and Parsegian, 1992) Eq. 2.6 again appears. However, the theory was then extended
to include van der Waals interactions and it is not clear if Eq. 2.6 remains valid.
Derivations of fluctuation free energies, in both hard and soft confinement theories,
need various assumptions about the compression parameter B. One achievement of
the present paper is to employ experimental data to determine the functional form
for this interaction in the soft confinement case.

It has also been shown on the basis of P(D) data (McIntosh et al., 1987) that

there is an additional repulsive interaction at small distances that was described as

the beginning of a steric interaction between head groups and an extra exponential
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has been used to fit the P(D) data (McIntosh and Simon, 1993) for large P and water

spacing smaller than 4A. Our data do not go to such small water spacings or such

high pressures, so this additional force will not be considered further in this work.
The following sections will show how B(Dyy) can be measured experimentally and

then how this result is used in order to determine the other interaction parameters.

2.3 Derivation of the free energy

Interpretation of osmotic pressure data requires the calculation of the free energy
F = E — TS, since the entropy S plays a major role. In general, for biophysical
systems the interactions are better described in terms of effective entropic forces
rather than conventional physics forces. Derivations of properties of smectic theories
have been performed before, but we present it again here with special care for the
numerical factors that are essential for detailed analysis of data. As usual, consider

the Fourier representation of the displacement variables,

-

w(y) = Y UQr Qy Q)T (2.7)

QE:Qy’Qz

with B = 7+ nD2 and the vectors Cj taking values in the first Brillouin zone defined
by the in-plane molecular size for @),, ), and by the membrane spacing D for (),. In

terms of independent variables, the fluctuation part of H from Eq. 2.1 is written as

1
Hp = ZEhQ Ugl* = qZ hg Ul (2.8)
Q Q,Q:>0
where
hg = NL*(K.Q; + 4Bsin*(Q.D/2)). (2.9)

From the equipartition theorem, the mode amplitude is
(IU51*) = ksT/hg. (2.10)
The partition function is given by

Z= 1] /C d(ReUg) d(ImUg) eP", (2.11)
G, Q:>0
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where the constant C has the role of making Z dimensionless by compensating for a

unit of (length)=2 for each mode Q. The integration yields

7z = J[ ¢ / d(Relg) e™atRea)" / d(ImUy) e Phatima)”
g.Q.>0 ~~F o
— . (2.12)
0,Q:>0 5 Q
Then, the free energy is

1 kgT

Fy = —=In Z—LZI ( > Y F(Q.), (2.13)
ﬁ allg Cr allQ-

where F'(Q,) stands for the free energy per compression mode. We will consider for

the energy reference the state with B = 0 and calculate
AF =F(B#0)—- F(B=0). (2.14)

For each compression mode we have,

kT LZ/ 20, 1 (KCQ;‘f+4B sin2(QzD/2)>

FlR) = =5 4o K.Q!

kBT L2 Qrmaz 9 4B Sin2 (QZD/Q)
= — In(1
9 4n? w/mm Q) n( * K.Q!

kBT\/i |sin(Q,D/2)|. (2.15)

Summing over all compression modes (Eq. 2. 13) the free energy per unit area is:

AFy AF(Q.)  ksgT Q.D
12 = Z 12 = 4 Z ‘
allQ, K. 5.

kpT [B 2N kT [B
S ,/ / sin(z)do = Ny |- (2.16)

The fluctuation free energy per unit area of one bilayer is

AF; kT [B

sin

NI 21 | K, (2.17)
and the total free energy is
AF kgT | B
— = V(D — = 2.18
N L2 Dw)+ 5\ R, (2.18)

AF represents the free energy change when free fluctuating membranes are brought

together at separation Dy, characterized by a compression modulus B(Dyy).
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2.4 Derivation of the mean square fluctuations

The degree of order in the lamellar system is characterized by the mean square fluc-

tuation function,

AYk) = (un(z,y) = wara(z,9)]), (2.19)

which is calculated as follows.

A*(k) = ([uo(z,y) —u(z,y))’) =

= { Z (Q) ( i(Qzr+Qay) _ '(sz+sz+szD))} 2> _

Qu

L@

= S W(QU(Q)) @7 (1= D) (1 — kD) =
g @

= Z(\U(Q)|> (1— € @FP) (1 ei@:hP) =
3

4sin? (2£D)

= keT). > :

o ‘g, NIA(K.Q!+4B sin® (%2))

(2.20)

using Eq. 2.10. With the integration limits Qmin = 0 and Qe = 00 (see Ap-

pendix B for the actual limits), we get:

Rl Asin® (%92) kT 1 sin (952) (2.21)

N @ \/KCB 4sin? (%2) 1 VKB NG ‘Sin(% )

As in the free energy calculation (Eq. 2.16) we are left with a summation over the
compression modes. The integrand is an increasing function of ¢, and the largest

contribution is given by the higher modes. With @, = 275 /L we write A?(k) as

Ag(k) kgT 1 ]%2 cos QMk
. K, B sm
= kel # SN, k). (2.22)

ir JE.B
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We have introduced the notation X (N, k) for the summation over the bilayer index j
because it is convenient to refer to X(V, k) in discussing the variation of A?(k) with k.
Due to periodic boundary conditions (PBC) the function A?(k) is symmetric about
k = N/2 as shown in Fig. 2.3. The behavior of A%(k) for k& > N/2 is an artifact of
PBC and is unusable in describing the real system. In order to minimize the PBC

effect we consider the asymptotic limit N — oc.

asymptotic

0 50 100 150 200

Bilayer index k

Figure 2.3: Effect of PBC on the correlation function: (k) is symmetric about
k = N/2. The wiggling of the curves, especially at small N, is due to the oscillating
functions in Eq. 2.22.

Fig. 2.3 shows the calculation of X(N, k) for N = 50, 100 and 200 together with
the asymptotic form corresponding to N = oc. For k < N/3 the finite size A?(k) is
practically indistinguishable from the asymptotic form.

For k£ =1, Eq. 2.22 gives the mean square fluctuation in the distance between two
neighboring bilayers,
kg1

2r VK.B
If 02 is measured experimentally then one obtains the compression parameter from

Eq. 2.23,

o= A*(1) =

(2.23)

ksT\? 1
B = = 2.24
( 21 > K. o* ( )
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and the fluctuation free energy from Eq. 2.17,

EsT\? 1
Fy = R e . 2.2
' (27() — (2.2

The total free energy is then

(2.26)

F = V'(z)W)+<kBT>2 !

21 K.0?
The results given in Eqgs. 2.24 and 2.25 should be used with caution; they are not
generally applicable. As explained in Appendix B the summations over undulation

modes have been done for the case
4Bsin*(Q,D/2) > K. Qrmin, (2.27)

which holds for the lamellar systems considered in this work. The condition given
in Eq. 2.27 can be easily violated for other systems, for example if the membranes
are very stiff (large K.). In this case one should evaluate the summations using ap-
propriate prescriptions. Additional conditions have been imposed on the integration
limits. In terms of the persistence length A\ = /K./BD? (de Gennes, 1974), these

conditions are

AL, > L,L, (2.28)
AD > o’ (2.29)

where a &~ TA represents the intermolecular distance in the membrane plane. Both
conditions are satisfied for our lipid samples.

We have used high resolution X-ray diffraction in order to measure the interbilayer
spacing fluctuation o2 needed in Eqs. 2.24 and 2.25. The scattering theory, adapted
to the discrete Hamiltonian (Eq. 2.1), is presented in the next chapter.



Chapter 3

Scattering Theory

3.1 Introduction

The lamellar X-ray scattering pattern consists of equally spaced diffraction peaks

situated at scattering vectors ¢, = %, where the integer i denotes the peak order.

The intensity for the h-th order is given by

Ii(q) = [F(h)*Su(q), (3.1)

where F'(h) and Sj(q) are the form factor and the structure factor respectively. The
structure factor Sp(q) is averaged over the fluctuations described in the previous
chapter. In the Caillé theory the fluctuations in the form factor and the fluctuations
in the structure factor are considered decoupled and the averaging of the two is done
independently (Zhang et al., 1994; see also the comment on Lemmich et al., 1996).
The scattering peaks from our samples are very narrow (as will be shown in Fig. 4.1)
and we perform the analysis of the peak tail close to the central peak, within +.15
deg in 26, vs. ~ 1 deg between peaks. In this small interval there is no significant
variation of the form factor and we treat it as a constant.
The form factor is the Fourier transform of the electron density profile of a single
bilayer,
D/2 _
F(h) = / p*(z) e*dz. (3.2)

—-D/2
When all F'(h) are measured, the bilayer electron density profile p*(z) can be Fourier
reconstructed (see Chapter 5). Because of the quasi-long range correlations, the
diffracted peak is broadened by the long power law tails of the structure factor Sy(q).
As a consequence, the simple integration of the peak intensity is inaccurate due to

the uncertainty from regions with low signal to noise ratios (Nagle et al., 1996).

16
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Therefore, a careful analysis of the peak shape is required for an accurate mea-
surement of F'(h). This was accomplished qualitatively by Caillé, (1972) and quan-
titatively by Zhang et al., (1994). The basic ingredient is the scattering correlation

function introduced by Caillé as

G (k) = (¢"2(tn+k = tn)y G o~ bai (k). (3.3)

where A?(k) is the interbilayer correlation function calculated in Section 2.4 from the
previous chapter (see Eq. 2.22). Using Caillé’s notation,
™ kBT 1

= —— A4
"y RS @4
we can rewrite Eq. 2.22 as
2m
A*(k) = = S(k), (3.5)

ai
and then combine Eq. 3.3 and Eq. 3.5 to write the correlation function in the simplified

form,
Gulk) = o= W* E(R), (3.6)
This form explicitly shows that G, (k) depends on 7; and on the bilayer index % only.
The Caillé parameter 7, is related to 0> = A(k = 1) through the simple expression
(see Eq. 2.23 and Eq. 3.4),
m=o"—. (3.7)
We have measured 7, by fitting to the X-ray data. The fitting program basically uses
the Modified Caillé Theory (Zhang et al., 1994) adapted to the discrete Hamiltonian

introduced in Eq. 2.1. The next section presents the fitting function with references to

the original expressions of the MCT theory (Zhang et al., 1994) given as “MCT.#”.

3.2 MCT fitting function

Using a continuum description of the membrane stack (Eq. 2.2), Zhang et al. (1994)
calculated the structure factor for a single domain of size L = ND as (see MCT.77)

4 L2
Sh(qa L) = q2

For a distribution of domain sizes P (L), the observed structure factor is the average

/OL dz Gy (2) (L — 2) cos|(q — qn)z]- (3.8)

(Sw(a)) = [ " dL P(L) Si(q, L), (3.9)
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The averaging over domain sizes is usually interpreted in terms of an effective finite-

size factor H.s(z) which is defined by the following relation (see MCT.15)

4L
e

(Sh(q))p = —— /0°° dz Ha;1(2) Gul(2) cos|(q — au)2]. (3.10)

H,s¢ is obtained by performing the integral over L in the expression for the average

structure factor (see Eq. 3.9 and Eq. 3.8),

(Sula))r = 47;53 /OOOdLP(L)/OLdeh(z) (L—2)cos[(q—qn)z]  (3.11)
- 47;? f; deLP(L) (L—zﬂ Gi(2) cosl(q — gn)2). (3.12)

By comparing the last result with Eq. 3.10 we identify
H,pp(z) = / dL P(L) (L - 2). (3.13)

Note that the expression for H.r; (Eq. 3.13) is very simple if the correlation function
G1(z) is independent of the domain size L.
The discrete version of Eq. 3.8 is (see Eq.MCT.78)

Su(g. L) = 2”5517 lN + 2§: G (k) (N — k) cos|(q — gn)kD] | (3.14)

Our preference for the discrete Hamiltonian comes from the fact that it allows for an
easier interpretation of the interaction parameters. Also, the use of the correlation
function in the form of Eq. 3.6 significantly increases the efficiency of data fitting
because the universal function X(k) is calculated only once and stored in a database.
A description of the fitting routine is given in Appendix C.

Initially (Zhang et al., 1994, 1996), fits to the X-ray data were done using a

Gaussian distribution for the scattering domain sizes,

_(L-Lg)?

P(L)~e ¢ . (3.15)

This P(L) distribution is shown by the solid line in Fig. 3.1.
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Figure 3.1: Solid line: Gaussian P(L) for Lg = 4000A and o5 = 4000A. Dashed
line: Gaussian P(L) for Lg = —10000A and o5 = 8000A. MCT uses the physical
region L > 0 only.

However, for about 1/3 of the samples the fits gave broad P(L) distributions centered
at negative values of Lg, as shown by the dashed line in Fig. 3.1, when MCT was
used for the data reported in (Zhang, 1995; Zhang et al., 1996). In that work, Lg was
constrained to positive values and the fits resulted in values of L close to zero. For
the data fit in the present work about 2/3 of the samples have this same anomalous
behavior and so it was decided to consider alternative P(L) distributions.

The solid line in Fig. 3.2 shows P(L) from Eq. 3.15 for an example where the fit
gave a negative Lg. The magnitude of the error bars on Lg and o (as shown in the
third column of Table 3.1) indicate over-parameterization.

The domain size distribution in Fig. 3.2 has no obvious physical interpretation.
However, the meaningful quantity is the effective finite-size factor H.sr, which we
now discuss. We first address the question whether, in the limit of our experimental
errors, there is more than one function P(L) that gives the same H,;y. We considered
a reasonable Gaussian P(L) function centered at L; = 4000A with width o, = 4000A.
The corresponding H,sy is presented in Fig. 3.3 with the solid line. Two different
Gaussian P(L) functions (L, = 0A, 05 = 5500A and Ls = —10000A, o5 = 8000A)
were found to give quite similar H,.s; as shown in Fig. 3.3 with dashed and dotted
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Figure 3.2: Solid line: Gaussian P(L) for Lg = —16250A (N = 266) and

0 = 10210A (N = 167). Dashed line: Exponential P(L) with Lz = 3600A (N
= 59).

line respectively.
This suggests that one might consider P(L) distributions with only one free pa-

rameter. A simple exponential,
P(L) ~ e /e (3.16)

was considered. Fitting to the same data set, the dashed line in Fig. 3.2 shows that
P(L) from Eq. 3.16 is not much different from Eq. 3.15 over the most important range
of L. The corresponding effective fine-size factors are plotted in Fig. 3.4.

Because the two distributions are similar (as seen in Fig. 3.2) they both give

Table 3.1: Comparison between fitting results; Gaussian vs. exponential P(L).

Exp Gauss Gauss*

% 3.4 3.7 4.0
L/I,  22440.08  2.324£0.09  2.39+0.08
m 0.073£0.003  0.076£0.003  0.078-£0.003
Lp 3600 + 150 - -

Lo - ~16250-£52110 3000

oG - 10210£11400 4150 & 190
(L) 3600+ 150 40004+ ?? 3800+ 200

* Constrained fit with L = 3000A.
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Figure 3.3: Finite-size factors for Gaussian P(L) with Lg = 4000A and ¢ = 4000A
(solid), Lg = 0A and o = 5500A (dashed), Lg = —10000A and o = 8000A (dotted)

practically the same H.;; and the same average domain size (L). Also, the other
fitting parameters are almost the same (see Table 3.1).

In general, the exponential P(L) has given smaller x2. Therefore, it was used in the
final version of the fitting program for all the data. The benefit is that the exponential
has only one parameter to be determined, Lg, which is roughly the average domain

size. For H.sp, Eq. 3.13 gives
Hop(2) ~ Ly e #/"e. (3.17)

Dutta and Sinha (1981) also proposed a one-parameter model (which we call the

classical theory) but with much different functional form,
Ho(z) = Lo e ™ /e, (3.18)

The parameter L¢ is similar to Lg; it plays the role of the average domain size. The
analytical behavior of Eq. 3.18 is considerably different near L = 0 from the behavior
of either of the distributions, that we have employed, as can be seen in Fig. 3.4. This
different behavior of Ho with z has been shown to worsen the quality of the fits

(Zhang et al., 1996), especially near the maximum in the peak intensity.
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Figure 3.4: Finite-size factors corresponding to the domain distributions shown in
Fig. 3.2 (Gaussian: solid line, and exponential: dashed line). The dotted line repre-
sents the finite-size factor for a single domain with L = 3600A and the dash-dotted
line shows the classical finite-size factor. All functions are scaled to 1 at z = 0 to
emphasize the functional forms; proper normalization requires constant area under
each curve.



Chapter 4

X-ray Data

4.1 Introduction

The experimental technique employed in this work has been developed in our labo-
ratory starting in 1993. Lipid multilamellar vesicles under various osmotic pressures
have been investigated using the high resolution X-ray configuration at the F3 sta-
tion at Cornell High Energy Synchrotron Source (CHESS). In average we made one
CHESS trip a year with runs of 7 to 14 days. Because of the location and the time
frame, the CHESS trips required very careful preparation. Samples had to be pre-
pared in advance and the objectives and protocols clearly stated and assumed by all
team members. This effort was rewarded by high quality data.

Fig. 4.1a shows a usual linear plot of the scattering data from a fully hydrated
DMPC sample. The same data are plotted on a logarithmic scale in Fig. 4.1b to show
the quality of the data and of the MCT fit. The signal to noise ratio is about 4 in
the peak tails and the background is practically negligible for most of the data range.
The peaks are very narrow, indicating a well defined lamellar spacing throughout the
lipid sample. The expanded scale in Fig 4.2 gives a better view of the peak shape as
a function of peak index h. In order to extract the fluctuation parameter 1, with our
instrumental resolution of 0.002 deg in 26, it is sufficient to take data within £0.1

deg from the peak center.

23
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Figure 4.1: (a) Low angle scattering data from fluid phase DMPC at T=30°C. The
intensity is normalized to 10° monitor counts (typical counting time). (b) Same data
as in (a) on log scale. The dotted line shows the background level and the dashed
lines the resolution function. The solid line represents the MCT fit.
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Figure 4.2: MCT fits to DMPC data. The amplitudes are normalized to 1 and
the peaks are superimposed in order to emphasize the peak tails. The intrumental
resolution is shown by the dashed line.

With few exceptions, the fit quality was good (x?s are given in the summary
tables in Section 4.4). The goodness of fit is remarkable since the scattering peaks
are very sharp, as shown in Fig 4.2. Usually x? is larger for higher PVP concentrations
for which the peak width approaches the resolution function. Also, because of the
small mechanical hysteresis in the 20 arm (see Section 4.2), the coarse and the fine
scan taken on the same peak are in some cases slightly shifted, giving a larger x?.
Figure 4.3 shows deviation plots for various DMPC fits. The largest deviations occur
in the region close to the top of the peak. However the Caillé parameter 7, is obtained
from the peak tails (see Fig. A.2 in Appendix A) where the fit deviations are much

smaller.
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Figure 4.3: Deviation plots
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4.2 High resolution X-ray scattering

A schematic diagram of the X-ray configuration is shown in Fig. 4.4.

Sh Sp
M_ i
X-ray - : | l/ | .
IC Beam stop
Samples
0cm 40 cm 75 cm 120 cm

Figure 4.4: X-ray configuration at the F3 station at CHESS. S;, = hutch slits, S,
= sample slits, S; = scatter slits, S; = detector slits, A = analyser crystal, IC = ion
chambers (monitor and detector), Nal = scintillator detector, FP = flight path.

The beamline monochromator (M) was used to select X-rays with A\ = 1.2147A.
For this we set to the W}, absorption edge which is known precisely (10.207 keV). An
in-plane resolution of 0.002 deg (FWHM) in 20 was achieved using a silicon analyzer
crystal (A) for selecting the scattered radiation (Zhang, 1995; Als-Nielsen et al., 1980).
As shown in Fig. 4.4, the detector arm is rotated according to the scattering angle
of the analyzer crystal (22.3 deg for Si(111) for A = 1.2147A). The beam dimensions
were defined by the sample slits (S;). The flux at the sample was 4-10° photons/sec
in an area of 0.75 mm (vertical) x 1.0 mm (horizontal). The ion chamber detector
(IC) in front of the samples was used to monitor the incoming X-ray flux. Normal
X-ray exposures were 15-30 minutes and negligible damage occurred for periods of
up to an hour as assayed by observing negligible changes in the width and position of
the first order peak. The scattered intensity was measured using a Nal scintillation
detector. The ion chamber in front of the Nal detector was used to locate the main
beam (20 = 0) and to measure the resolution function (Zhang, 1995).

The low background (Fig. 4.1b) was achieved by carefully shielding the detector
from stray radiation. This was done using Pb tape to enclose the region of the scatter

slits (Ss), analyser (A), detector slits (Sy), and detectors. Also, the acceptance of the
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hutch entrance slits (S;) was minimized in order to prevent stray radiation from
entering the hutch.

For each peak a coarse step scan in 26 was taken to obtain data well into the
tails of the peak, e.g., for the second order reflection centered at 26, the range for 26
was 20,+0.1 deg. At the end of the range for each order h, the signal to background
ratio was between 3 and 7 depending on the PVP concentration. A fine step scan
(e.g., of total width 0.02 deg for h = 2) was then taken to obtain more data in the
central peak. The backgrounds were nearly constant, with values of 5 and 7 counts for
water and 40% PVP solutions, respectively, compared to roughly 10 — 10* counts at
the top of the first order peak. Lamellar D-spacing was determined from the second
order peak; no slit smear correction was necessary due to the small beam size in the

out-of-scattering-plane direction.

4.3 Sample preparation

The sample preparations for the CHESS studies were carried out by Dr. Stephanie
Tristram-Nagle. DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine), EPC (egg
phosphatidylcholine) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) were
purchased from Avanti Polar Lipids (Alabaster, AL) in the lyophilized form and
were used without further purification. Thin layer chromatography using chloro-
form:methanol:7 N NH,OH (46:18:3, v/v) revealed only a single spot when stained
with a molybdenum blue reagent (Dittmer and Lester, 1964). Polyvinylpyrrolidone
(PVP) with a molecular weight of 40,000 was purchased from Aldrich Chemical Co.
and dried in a vacuum oven at 70°C overnight. PVP /water solutions from 0 to 60%
PVP (w:w) were prepared by mixing PVP with Barnstead deionized nanopure water
in 3 ml nalgene vials and allowed to equilibrate overnight at room temperature. PVP
solutions were added to lipid at nominal 3:1 (when 40% PVP in water and below)
or 5:1 (when 45% PVP in water and above) weight ratio in 0.1 ml nalgene vials.
The samples were kept at room temperature for 24 hours with occasional vortexing.
Thin walled 1.0 mm glass X-ray capillaries (Charles Supper Co.) were cleaned by
sequentially washing with a chromic acid bath, deionized water, acetone and finally

copious amounts of deionized water. After drying with nitrogen, the capillaries were
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flame-sealed at one end. About 10 mg lipid dispersion was then loaded into each
capillary and these samples were centrifuged for 10 min at 1100g in a small, nalgene
holder using a glycerol cushion. The capillaries were then flame sealed and loaded
into cassettes with 12 slots/cassette with the ends of the capillaries embedded in a
slab of silicone sealer to insure further against evaporation.

The cassette was mounted so that the capillaries were positioned horizontally
inside a cylindrical aluminum sample chamber with mylar windows for entry and
exit of X-rays. The cassettes fit directly into a custom holder which was attached
to X-Y-Z motorized translations to move the samples relative to the X-ray beam.
Temperature was controlled to within 0.02°C. Thin layer chromatography performed
a month after the experiments generally gave lysolecithin contamination less than 2%

which is comparable with the fraction found in unexposed samples.

4.4 Fitting results

The backgrounds were subtracted from scattering data before fitting all orders si-
multaneously using the modified Caillé theory (see Chapter 3 and Appendix C). The
parameters determined by the fitting program are the Caillé 1, fluctuation parameter,
the average domain size Lg, and the fluctuation corrected (and Lorentz-corrected)
ratios of form factors r, = |F),/F\|.

The main fitting results are summarized in tables with the following legend:

PVP Nominal PVP concentration

log Posmn 10g10 (Posm[dyn/cm?])

D D-spacing in A

I, Number of counts on the hA-th peak per 10° monitor counts
i Caillé order parameter

F,/Fy Form factor ratios given by MCT
Lg Average domain size in A

2 Reduced x?
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4.4.1 EPC
Table 4.1: EPC, T=30°C.
PVP 0% 2% 2% 4%
log Posm - 4.62 4.62 5.03
D 66.32 64.58 64.43 63.50
I 887 1492 1490 2836
I 127 140 126 262
n 0.137 4+ 0.009 | 0.103 £+ 0.004 | 0.101 + 0.004 | 0.088 4+ 0.003
Fy/Fy | 1.477 £ 0.040 | 1.300 £+ 0.027 | 1.290 £+ 0.023 | 1.270 £+ 0.021
Lg 1150 4+ 70 2820 + 125 2680 + 100 3420 + 115
X2 2.39 2.87 1.86 2.75
PVP 5% 10% 15%
log Posm 5.21 5.77 6.2
D 62.08 60.20 58.11
I 1560 4715 4325
I 260 526 393
I3 - 25 32
T 0.068 £+ 0.005 | 0.044 £+ 0.003 | 0.032 + 0.004
F,/F; | 1.474 £ 0.036 | 1.006 + 0.018 | 0.857 £+ 0.022
F3/Fy - 0.458 + 0.031 | 0.531 + 0.048
Lg 2420 4+ 130 3600 + 140 2990 + 120
X2 1.54 1.47 1.88
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Table 4.2: EPC, T=30°C, cont.
PVP 25% 35% 45% 55%
log Posm 6.80 7.20 7.47 7.73
D 56.54 54.70 53.48 51.24
I 13495 13135 7080 8565
I 1165 860 348 121
I3 50 177 84 61
1, 12 17 16 32
n 0.031 + 0.003 | 0.028 + 0.003 | 0.025 £+ 0.003 | 0.018 4+ 0.004
Fy/F; | 0.788 + 0.016 | 0.642 £+ 0.016 | 0.508 + 0.018 | 0.288 + 0.015
F3/F; | 0.547 £+ 0.041 | 0.621 £ 0.029 | 0.558 + 0.035 | 0.418 + 0.039
Fy/F; | 0.455 £+ 0.087 | 0.282 + 0.142 | 0.414 + 0.092 | 0.424 + 0.065
Lg 8290 + 500 7560 + 320 6170 4+ 500 4950 + 300
2 2.84 3.47 2.07 2.57
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4.4.2 DMPC
Table 4.3: DMPC 1997, T=30°C.
PVP 0% 2% 4% 6%
log Posm - 4.57 5.03 5.27

D 62.71 62.12 61.19 60.82
I 2088 5040 2716 3064
I 271 668 452 459
n 0.092 £+ 0.004 | 0.08240.003 | 0.0734+0.003 | 0.070+0.003

Fy/F; | 1.577 £ 0.031 | 1.505+0.024 | 1.495+0.025 | 1.3704+0.023
Lg 4680 + 160 5990 + 240 | 3620 4+ 140 | 5370 + 190
X2 2.86 4.81 3.31 2.46

PVP 8% 10% 10%

log Posm 5.60 5.76 5.76

D 59.62 58.89 58.79
I 1892 3722 2826
I 331 545 469
T 0.056 4+ 0.003 | 0.048 £+ 0.003 | 0.043 + 0.002

Fy/F; | 1.345 £+ 0.022 | 1.235 + 0.022 | 1.173 £+ 0.015
Lg 4420 + 150 4020 + 150 3730 £+ 80
2 1.52 4.45 1.60
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Table 4.4: DMPC 1997, T=30°C, cont.

PVP 20% 30% 30%
log Pyosm 6.49 6.95 6.96

D 56.30 54.08 53.35

L 4627 5873 5794

I 748 737 667

I 30 53 58

m 0.036 £ 0.002 | 0.022 £ 0.002 | 0.020 =+ 0.002
Fy/F; | 1.111 + 0.020 | 0.872 + 0.015 | 0.806 + 0.013
F3/F, | 0.420 + 0.054 | 0.457 & 0.022 | 0.482 + 0.032

Ly 6180 & 210 | 6410 + 160 | 6460 % 150

Y2 2.15 1.59 1.37
PVP 15% 50% 60%

log Posm 7.45 7.58 7.83

D 51.50 51.14 50.81

I 4892 4962 12957

L 287 244 377

I 49 58 81

I, 14 17 40

m 0.033 £ 0.003 | 0.021 £ 0.002 | 0.020 =+ 0.002
Fy/F; | 0.648 + 0.015 | 0.540 + 0.009 | 0.389 + 0.008
F3/F; | 0.490 + 0.030 | 0.472 & 0.021 | 0.347 + 0.014
Fy/F, | 0.480 + 0.093 | 0.417 & 0.042 | 0.407 + 0.032

Ly 6480 & 100 | 7920 £ 130 | 14200 + 370

2 1.07 1.14 1.41
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Table 4.5: DMPC 1996, T=30°C.

PVP 0% 0% 5% 5%
log Posm - - 5.20 5.19
D 63.36 63.23 62.84 61.63
I 1310 1050 1820 3090
I 245 175 410 473
i 0.10440.006 | 0.114+0.007 | 0.0584+0.006 | 0.05740.004
Fy/Fy | 1.795+0.059 | 1.794+0.057 | 1.42840.047 | 1.3444+0.030
Lg 3080 4 320 | 2440 4+ 220 | 1730 120 | 2350 + 110
2 1.58 1.27 1.94 1.24
PVP 10% 15% 20%
log Posm 5.78 6.19 6.51
D 59.89 58.10 07.28
I 4040 5150 4775
I 928 830 812
M 0.032+0.003 | 0.030+0.003 | 0.0254+0.003
Fy/F; | 1.197+0.023 | 1.106+0.024 | 1.05540.019
Lg 2920 + 120 | 3380 £170 | 3560 + 150
X2 2.25 1.57 1.84
PVP 25% 35% 45%
log Posm 6.78 7.19 7.49
D 56.22 54.32 52.30
I 5530 7500 7930
Iy 757 912 460
I3 44 62 59
1 - - 16
M 0.025+0.002 | 0.02440.003 | 0.0264+0.003
Fy/F; | 0.972+0.017 | 0.85040.023 | 0.610+0.014
F3/F; | 0.419+0.030 | 0.48440.041 | 0.450+0.026
Fy/Fy - - 0.357+0.058
Lg 6870 + 570 | 14200 + 4400 | 4170 £180
2 1.00 1.67 1.39
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4.4.3 DOPC
Table 4.6: DOPC, T=30°C.
PVP 0% 5% 10% 15%
10g Posm _ 5.24 5.74 6.21
D 62.9 61.4 58.5 57.0
L 1665 1320 6580 8645
I 143 134 610 770
I, _ ; _ 72
m 0.110 & 0.007 | 0.077 & 0.006 | 0.059 <+ 0.005 | 0.040 + 0.002
Fy/F; | 1.264 + 0.033 | 1.141 + 0.038 | 1.038 & 0.034 | 0.842 & 0.014
/R _ ; _ 0.640 & 0.029
L 2900 + 150 | 3100 + 180 | 6600 & 370 | 5750 & 160
Y2 2.71 2.00 9.57 1.98
PVD 20% 25% 30% 35%
10g Posm 6.55 6.85 6.95 7.15
D 55.1 54.3 53.9 53.7
L 6545 14600 5840 21075
I 478 1038 338 1790
I, 80 205 64 456
I, _ ; _ 38
m 0.037 & 0.003 | 0.021 & 0.002 | 0.033 £ 0.003 | 0.016 + 0.002
Fy/F; | 0.761 + 0.015 | 0.651 + 0.012 | 0.670 & 0.016 | 0.697 & 0.016
F3/F; | 0.690 + 0.032 | 0.582 + 0.026 | 0.677 & 0.038 | 0.701 = 0.030
Fs/F _ ; _ 0.363 & 0.044
Lp 6500 & 220 | 9300 + 300 | 6320 + 230 > 10000
Y2 1.64 2.59 2.69 7.37
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Table 4.7: DOPC, T=30°C, cont.

PVP 40% 45% 50% 60%
log Posm 7.36 7.47 7.62 7.84
D 04.0 51.6 50.8 49.8
I 6363 2843 13125 28838
P 392 105 290 270
I 83 37 155 272
1y 12 14 28 122
T 0.032 £+ 0.002 | 0.033 £ 0.005 | 0.018 £ 0.003 | 0.013 £+ 0.002
F,/F; | 0.635 + 0.013 | 0.461 £+ 0.017 | 0.329 + 0.015 | 0.211 + 0.013
F3/Fy | 0.663 £ 0.028 | 0.601 + 0.048 | 0.493 + 0.037 | 0.405 £+ 0.028
Fy/Fy |0.365 £ 0.083 | 0.601 + 0.123 | 0.346 + 0.050 | 0.481 + 0.083
Lg 4600 £ 100 3400 £ 80 9860 £ 420 > 10000
X2 1.82 1.23 2.42 6.92
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Structure Determination

5.1 Introduction

A major goal has been to obtain reliable structure determinations of lipid bilayers.
The central quantity A (area/lipid) in the L, phase (50°C), was first obtained in this
laboratory for DPPC. In this chapter we use similar methods to obtain A and the
structure of three more lipids, DMPC, EPC and DOPC. By using high instrumental
resolution synchrotron X-rays, we were able to correct for the effect of fluctuations
on the scattering peak (Zhang et al., 1996) as described in Chapter 3. Another
key element in our analysis (Nagle et al., 1996) was to determine the difficult fluid
(F) phase structure by making use of measured differences with the structure of
the gel (G) phase; G phase structure is determined independently because of the
extra data from wide angle scattering (Sun et al., 1994). At first, it would seem
to be difficult to employ this method for samples with no G phase (EPC) or with
poorly characterized G phase (DOPC). However, the method assumes only that the
headgroups are the same in both lipids being compared. Therefore, we propose to use
measured differences between the F' phase to be determined and the G phase DPPC.
A check of our method is provided by results for DMPC, in an independent structure
determination that uses quite different procedures (Koenig et al., 1997).

With our investigation method, namely X-ray diffraction, we can obtain the elec-
tron density profile p*(z) along the bilayer normal z, from which we can then identify
the location of different lipid components. The scattered intensity is a function of
the electron contrast between the lipids and the water molecules and it is instructive
to estimate this contrast. Let us consider the benchmark lipid DPPC at 50°C. The

total number of electrons in a DPPC molecule is n}; = 406e and the lipid volume is
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V= 12324° (Nagle and Wiener, 1988). This gives an average lipid electron density
p; R~ 0.336/A3 that matches the water electron density (at 50°) pj, = 0.3306/A3.
There is however an electron density gradient across the lipid bilayer that produces
observable scattering peaks. The highest electron density is in the headgroup region,
due to the phosphorus atom. The total number of electrons in the headgroup, in-
cluding the carbonyls, is nj; = 164e. With a headgroup volume Vy = 3194° (Sun
et al., 1994) this gives p}; ~ 0.516/A3. The lowest electron density is at the bilayer
center where the terminal methyls are located. Using Vop, = 54.6A° (Petrache et
al., 1997) we obtain pfp, ~ 0.166/A3. These extremes are to be compared with the
water electron density pj, = 0.33€/A3. This rough calculation gives just an estimate
of the density gradient across the lipid bilayer because the density profile is smeared
out by thermal fluctuations of the lipid molecules.

Next we proceed with the calculation of the actual density profiles and of the
basic structural parameters. With the form factors Fj,, obtained from the MCT fits,

absolute electron density profiles can be calculated as

1 2 Tma 21hz
(2) — piy = =F — F 1
pr(2) = pw = 5 FO0) + 5 1}2%%008(1)), (5.1)
where hy,q, = 4 for our data. The phase factors ay, = (—, —, +, —) are well established

for these lipids (McIntosh and Simon, 1986a).
The quantity pj, = 0.3336/A3 is the water electron density at 30°C. The “zero-
order” form factor F'(0), which represents the total electron contrast between the

bilayer and the water solution, is given by Nagle and Wiener (1989),
AF(0) = 2(ng, — pw'Vi) = 2(p1 — pw)Vi, (5.2)

where A is the area per lipid, n} is the number of electrons in the lipid molecule,
V1, is the lipid volume and p} = n} /Vy is the average electron density of the lipid
molecule. The first order diffraction form factor Fj is initially undetermined, so only
the ratio r, = |Fj,/Fy| of form factors can be measured directly. This means that
only relative electron density profiles can be routinely obtained. Determining F; and

the absolute electron density profiles will be accomplished in Section 5.2.4.
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5.2 Results

5.2.1 Headgroup spacing Dypy

The headgroup spacing Dgy is defined to be the distance between the two peaks in
the electron density profile and is usually supposed to be a good approximation to
the phosphate-phosphate thickness of the bilayer (Pearson and Pascher, 1979). Dyy
is the same, of course, for the relative and the absolute electron density profiles. In
practice, at least four orders (h,., = 4) are needed to obtain a reasonably accurate
estimate of Dyy. Furthermore, even with four orders, the measured Dypy needs to
be corrected due to the limited number of Fourier terms. For this correction we follow
the procedure introduced by Sun et al. (1996). Four orders of diffraction allow a quite
good estimate of Dyp, but this estimate is systematically biased as Dy /D varies
with dehydration. Electron density models have been used to estimate the correction
(Sun et al., 1996). We have used models where the headgroup electron density profile
is represented by one Gaussian peak because this is close to the resolution of our
data. More refined electron density models, such as two Gaussians in the headgroup
region (Wiener et al., 1989) should be used to estimate the correction if more orders
of diffraction are obtained. It may be noted that the corrections to Dgpy range from

1.94 at P =10 atm to 0.24 at P = 56 atm.

Figure 5.1: Corrections ADpy = D — D¢ obtained by Sun et al. (1996)



Chapter 5. Structure Determination 40

The information on Dyy must be supplemented with volumetric measurements
in order to obtain the area per molecule. The basic information needed are shown in
Table 5.1 at the end of this chapter. Relative electron density profiles were first ob-
tained for samples under osmotic pressure that have four orders of diffraction. Fig. 5.2
shows typical absolute electron density profiles; the conversion to absolute electron
density, performed in Section 5.2.4, is not necessary to obtain Dypy. The corrected
head group spacing Dypy was then obtained from the electron density profiles, and
the value of Dy is given in Table 5.2 for EPC at P = 29 atm, for DMPC at P = 27
atm, and for DOPC at P = 56 atm.
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T 040f 10.40
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0.25F 1025

0.20f 10.20

Figure 5.2: Absolute electron density profiles p*(z). Panel (a): DMPC (solid), EPC
(dashed) and DPPC (dotted); Panel (b): DOPC (solid) and EPC (dashed).
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5.2.2 Area per lipid molecule

The area per molecule is obtained following a procedure initiated by McIntosh and
Simon (1986a) and employed by Nagle et al. (1996). These studies compared a lipid
bilayer in the F' phase with the same lipid in the G phase. Here we extend this
method to compare a lipid bilayer in the F' phase with a different lipid in the gel
phase, provided only that the headgroup is the same for both lipids. Since this is not
an obvious extension, a derivation is now given.

The first basic assumption is that headgroups are fully solvated for both the
reference R lipid bilayer and the F' phase lipid bilayer under study. (Note that the
reference lipid bilayer R could be either G phase or F' phase.) Under the condition
that the headgroups are chemically identical, the headgroup volume is therefore the
same in R as in F'. This means that the difference in lipid volumes is given by the

difference in the volumes of the remainder of the molecule
VE -V =A"DE — ARDE, (5.3)

where D¢ is half the thickness of the hydrocarbon region, corresponding to one mono-
layer. The condition that the headgroups are chemically identical also plays a role in

the second basic relation
Dg - Dg = (DI};H - DII}H)/Q' (5-4)

This assumes that the major determinant of differences in Dy is differences in the
hydrocarbon region, which is a reasonable approximation even if the headgroup tilt
is different because the lever arm for the distance between the phosphate group and
the carbonyls is short. Solving Eqs. 5.3 and 5.4 for A" yields

P_ Vi Vi
DE+ ADyg/2’

(5.5)

In our study we take DPPC in the gel phase to be our reference lipid with headgroup
volume V;E = 319A° determined by Sun et al. (1994). Values of AF were obtained
from Eq. 5.5 for samples with four orders of diffraction and one of these values is
given in Table 5.2 for non-zero values of P.

The external osmotic pressure not only pushes the bilayers closer to one another

by decreasing Dy, but also removes water by decreasing A (Parsegian et al., 1979).
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Since the lipid volume remains constant with varying P, (White et al., 1987),
the bilayer thickness increases with increasing P,,. The change in area with the
applied osmotic pressure is determined by the bilayer compressibility modulus K y4;

the defining relation is
A—Ay=—-ADwP/K 4. (5.6)

A linear fit to A vs. ADy P gives the fully hydrated area Aq as the intercept at
P = 0, and the slope —1/K 4, from which the compressibility modulus K4 can be
obtained. For DMPC and EPC the fits are shown with solid lines in Fig. 5.3a.
Standard deviations are shown with dotted lines. Our best fit to DMPC data gives
Ay =602+ 1.0A% and K4 =108 £ 35 dyn/cm. Our result for K4 agrees with Evans
and Rawicz (1990) (K4 = 145 + 10 dyn/cm) and the more recent measurement of
Koenig et al. (1997) (K4 = 136 (123—152) dyn/cm), who also report a fully hydrated
area Ay = 59.5 £ 0.2A°, Agreement for Ay with Koenig et al. (1997) becomes even
better if we constrain K4 to their value. Then, we obtain Aqg = 59.7 + 0.2A%. For
EPC our best fit in Fig. 5.3 yields Ag = 69.4 + 1.2A% and K4 =116 dyn/cm.

0 100 200 300 400 0 100 200 300 400 500
PD, Alerg] PD, A [erg]

Figure 5.3: Determination of A, and K. Panel (a) EPC: solid line represents the
best fit giving K4 = 116 dyn/cm and the dotted lines show one standard deviation
corresponding to K4 = 201 dyn/cm (smaller slope) and K4 = 81 dyn/cm (larger
slope). DMPC: dashed line is the best unconstrained fit giving K4 = 108 dyn/cm
and the solid line shows the fit constrained to K4 = 136 dyn/cm from Koenig et al.
(1997). Panel (b) DOPC: solid line represents the best fit to corrected Dypy (solid
symbols) giving K4 = 188 dyn/cm. Open symbols show the uncorrected Dyy with
the unphysical negative K 4 fit (dashed line).
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Fig. 5.3b compares the uncorrected with the corrected Dyy data for DOPC. Our
direct data for A are limited to samples under modest osmotic pressures P, from 10
to 56 atm, and the data points are rather scattered from the straight line that is
required for an elastic compressibility modulus. Nevertheless, these data suffice to
obtain a reasonably precise extrapolation to a fully hydrated area A, = 72.2 + 1.1A.
The scatter in the data make it much more difficult to obtain a precise value for K4,
because of ~ 50% error in the slope 1/K4. The best fit, shown with the solid line
in Fig. 5.3b, gives K4 = 188 dyn/cm. Note that using the uncorrected Dy (open
symbols) may lead to the unphysical result that K 4 is negative (dashed line).

5.2.3 Other structural quantities

With the area A determined, we can now calculate many structural parameters of
interest. The results are summarized in Table 5.2. For each lipid we present the results
for the fully hydrated sample (P = 0) and for one of the less hydrated samples. The
hydrocarbon thickness per monolayer is Do = (Vy, — Vi)/A. The Luzzati bilayer
thickness is defined as Dp = 2V}, /A and the corresponding water thickness is Dy, =
D — Dp with the number of waters per lipid ny = ADy, /(2Viy). The steric definition
of the bilayer thickness (McIntosh et al., 1987, Nagle and Wiener, 1988) is Df; =
2(D¢ + Dy), where we choose Dy = 9A, consistent with neutron diffraction results
(Buldt et al., 1979), to estimate the PC headgroup thickness. Fig. 5.5 shows where
these various thicknesses fall on the electron density profile. Using D% we then
calculate the interbilayer spacing Dj,, = D — D' and the number of water molecules

in the headgroup region n}, = A(Ds — Dp)/(2Viy).

5.2.4 Absolute electron density profiles

Once the area per molecule is known, the electron density in Eq. 5.1 can be set on an

absolute scale. Starting with Eq. 5.2, F(0) is determined. In order to calculate F; we

consider the headgroup peak integral H, above the water level, which is defined as
D/2

H= (p"(2) = pw)dz. (5.7)

D¢
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Then, we have
AH = ny —pwViu = (05 — )V (5.8)

For a PC headgroup, nj; = 164e and at T' = 30°C Eq. 5.8 yields AH = 57.7e. This
value of AH should be a constant for all lipids with PC headgroups. This derivation
assumes that there is only water, and no hydrocarbon, mixed with the headgroups;
although this is undoubtedly not true, the electron density of the methylene region is
quite close to pjy, so this is still a good approximation. (A further refinement could be
constructed along the lines of the development given by Nagle and Wiener (1989), but
this is unwarranted for only four orders of diffraction.) Then, F; in Eq. 5.1 is varied
until the headgroup peak in the electron density profile gives a value of H, which
together with the already determined A, satisfies Eq. 5.8. Fig. 5.2 shows absolute

electron density profiles.

5.2.5 Continuous transforms

In the previous section we focused on partially dehydrated samples which, having
a lower level of fluctuations, have more diffraction peaks. We now test whether
there is any major structural change upon mild dehydration that could invalidate the
extrapolation of A in Fig. 5.3. If there is no structural change at all, then the form
factors must all lie on the same continuous transform (Torbet and Wilkins, 1976;
MecIntosh and Simon, 1987), defined as
D/2 :
F)= [ 1) =] e iz (59)

Fig. 5.4 shows the continuous transforms for each lipid, obtained using the sampling

theorem,

where g, = 2h/D and Fj, was obtained for each lipid under one particular osmotic
pressure P’. Then, the first order form factors F; for all other samples were obtained
by placement on the F(q) curve. There are then no additional free parameters for
the absolute values of the other F}, which are shown in Fig. 5.4. Small systematic

deviations of Fy from the F'(q) curve, especially for DMPC, at values of P higher and
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lower than P’ are consistent with the effect of area compressibility shown in Fig. 5.3,
as we checked by varying the bilayer thickness in model electron density profiles of
the 1-Gaussian hybrid type (Wiener et al., 1989). However, the small deviations of
the measured Fj from the continuous transform indicates that there are no major

structural changes with the range of osmotic pressures P employed.

IF(q)| [e/A7]

IF(q)| [e/A7]
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Figure 5.4: Absolute continuous transforms |F(q)| obtained for EPC at P' = 29
atm, for DMPC at P’ = 27 atm and for DOPC at P’ = 29 atm. The solid symbols
represent the form factors used in the reconstruction.
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5.3 Discussion

The main structural results are the areas A’ for the fully hydrated biologically rel-
evant L, phase of EPC, DMPC and DOPC bilayers. Our result AL, = 69.4A
at T = 30°C is smaller than 74A” obtained at T = 25°C using the Luzzati gravi-
metric method (Lis et al., 1982) '. The gravimetric method typically overestimates
A because, contrary to the assumption in that method, not all the weighed water
goes between the bilayers until the excess water phase begins to form (Klose et al.,
1988; Tristram-Nagle et al., 1993; Koenig et al., 1997). The gravimetric method
was later modified (Rand and Parsegian 1989) to use data taken on samples under
osmotic pressure together with a compressibility modulus K4 = 145 dyn/cm which
was not measured for EPC but estimated from DMPC (Evans and Needham, 1987);
the revised value 69.5A° agrees very well with our value of 69.4A%. The agreement
would not be quite so good if we also used this same value of K, instead of our
best K4 = 116 dyn/cm, nor if thermal expansion from T = 25°C to T = 30°C were
taken into account. Using an area dilation of 5x1073/°C (Evans and Needham, 1987)
would add about 1A” to AL .. However, our K, has a large uncertainty, and this
propagates a range of uncertainty 68.3 — 70.5A” in our A. Since a similar range
of uncertainty applies to the modified gravimetric result, we suggest that there is
agreement for EPC that AL, = 69.441.1A% in the T = 25 — 30°C range.

Our result AL, .. = 59.7A° for DMPC at T = 30°C is lower than the value 654
obtained from the unmodified Luzzati gravimetric method (Lis et al., 1982) and even
somewhat lower than the 61.7A” obtained from modified gravimetric method (Rand
and Parsegian, 1989), both at 7' = 27°C. Recently, the gravimetric method has been
further modified by combining it with NMR deuterium order parameter (Scp) data
as a function of osmotic pressure (Koenig et al., 1997). There is uncertainty in
converting Scp data into absolute values of A (Nagle, 1993; Koenig et al., 1997),
but Koenig et al. (1997) argue that changes in A are accurately obtained. By using
the gravimetric method to obtain A at low hydration, where it is likely that most of
the water does go between the bilayers, and by using the K4 obtained from NMR,
Koenig et al. (1997) obtained A%, po = 59.5 + 0.2A% at T = 30°C. This is excellent

!The gravimetric method uses samples with known amount of water and lipid and assumes that
all weighed water goes in between lipid bilayers, i.e. it assumes no defect regions. The area per
molecule is then determined from the volume of the unit cell AD/2 =V, + nwViy.
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agreement between the results of two different methods that involve quite different
assumptions. We suggest that there is agreement that AL, po = 59.640.2A4°,

The area per lipid A, = 72.24% that we obtain for fully hydrated DOPC is con-
siderably larger than the value 59.44° obtained by Wiener and White (1992) on de-
hydrated samples. Indeed, our value of A is so much larger than we had anticipated
that it is worth emphasizing why the result must be at least qualitatively correct, by
comparing to DPPC in the L, phase. The molecular weight of DOPC (786) is greater
than DPPC (734). The specific volume is very similar (only 1% larger for DPPC), so
the molecular volume of DOPC (1303;13) is larger than for DPPC (1232;13). Never-
theless, the DOPC bilayer is thinner than the DPPC bilayer in the L, phase, as shown
in Fig. 5.2. This requires that AP°FC be greater than APPP¢ and Eq. 5.5 calculates
by how much. Rand and Parsegian (1989) reported A, = 72.14% after reworking
earlier data using an estimated compressibility K4 = 145 dyn/cm. This is much
better agreement with our A, than for DPPC where their method gives A, = 68.14°
which is larger than the value 4, = 62.9A4° that was obtained (Nagle et al., 1996) by
the same methods employed in the present work. The earlier data (Lis et al., 1982)
gave A, = 824 for DOPC using the unadulterated Luzzati method, which is now
recognized as giving values of A, that are too large (Tristram-Nagle, 1993; Koenig et
al., 1997). However, Gruner et al. (1988) also used the Luzzati method and obtained
A, = 70;12, but at the much lower temperature of 2°C'. Again at low temperatures,
from calorimetry of the ice transition, it has been reported (Ulrich et al., 1994) that
the number of waters/lipid ny is 20 as opposed to our value of 32.5 given in Table 5.2;
using ny = 20 gives A, = 6247 at 30°C, which is clearly too small. However, these
two low temperature results could be consistent with each other since the Luzzati
method overestimates A, and they could be consistent with our result at 30°C' if
there is a strong temperature dependence in A, and ny for DOPC. This suggests
that future studies of DOPC as a function of temperature could be interesting.

There are no literature values for area compressibility for DOPC to compare to
our best value K4 = 188 dyn/cm. (The value K4 = 145 dyn/cm suggested in
Table 1 of Rand and Parsegian (1989) was inferred from DMPC.) Considering other
phosphatidylcholine lipids, Koenig et al. (1997) give K4 = 136 (123 to 152) dyn/cm
for DMPC and K4 = 210£10 dyn/cm for SOPC for compression. For the same
lipids under tension Evans and Needham (1987) give K4 = 144.9+10.5 dyn/cm and



Chapter 5. Structure Determination 48

K4 =199.6+12.7 dyn/cm, respectively. Although our K 4 for DOPC is not so precise,
our best value is consistent with the intuition that K4 should increase with chain
length and decrease with number of unsaturated C' = C bonds.

The large differences in AL, and AL, .. imply that the hydrocarbon chains
have a considerable influence on A”. Not surprisingly, unsaturation leads to larger
AF . Clearly, there is a ‘fluidity’ spectrum, and not just one generic brand of fluid
chains.

The basic assumption in our method of obtaining A" is that phosphatidylcholine
headgroup dimensions are the same for different PC lipids in different phases. Now
that the agreement with Koenig et al. (1997) lends support for this assumption, it is

worth looking at these dimensions, as visualized in Fig. 5.5.
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Figure 5.5: Comparison of various bilayer thicknesses with the 4th order Fourier
electron density profile for DMPC at P,,,, = 27 atm.

A newly defined thickness corresponds to that part of the headgroup that extends
from the average hydrocarbon layer, defined as D¢, to the peak in the electron density
profile; we define this as Dy = (Dpg/2) — De. For PC headgroups (which in our
definition include the glycerol group and the carbonyls), Table 5.2 gives Dy, = 4.1A.
(Note that Dy appears a bit larger in Fig. 5.5 because of the correction to Dy g due

to Fourier truncation.) Once Dy and Vy are known for a given headgroup type,



Chapter 5. Structure Determination 49

there is a simplified way to obtain A which is equivalent to the method developed
in Eq. 5.5 in Section 5.2.2. First, one obtains D¢ = (Dyg/2) — Dyy from Dy and
the corrected Dyy. Then, one obtains A = Vi/De where Vi is the hydrocarbon
volume obtained using Vo = V;, — Vg, and of course, V7, is measured. It may also be
noted that the basic assumption in this paragraph can be addressed with molecular
dynamics simulations that would determine how much Dy, varies for different PC
lipids in different phases.

Because we could not obtain enough orders of diffraction for fully hydrated F
phase lipids, we applied osmotic pressure P which reduces the fluctuations. This
meant that we had to extrapolate to P = 0 to obtain fully hydrated structure. This
necessarily led us to obtain estimates for the area compressibility K4 (see Fig. 5.3).
Although our estimates for K4 are not as accurate for DMPC as obtained by others
(Koenig et al., 1997; Evans and Needham, 1987), they do agree. Furthermore, the
errors for A" remain small even though the errors for K4 are large, as can be seen
in Fig. 5.3. In this context it should be mentioned that, if we had not corrected
the head-head thickness Dyy following Sun et al. (1996), the slopes in Fig. 5.3 and
the values of K4 would have been very large or even negative, which is physically
unrealistic.

After the area per molecule was determined, we have set the electron density pro-
files (Fig. 5.2) and the continuous transforms (Fig. 5.4) on absolute scales. This was
accomplished by evaluating the headgroup integral in Eq. 5.8 provided that the head-
group volume is known. One remarkable fact indicated by Fig. 5.2 is that the extreme
values of the absolute electron density profiles are in agreement with our estimates
at the beginning of this chapter, which were based on volumetric measurements.

From the plot of the absolute electron density profiles shown in Fig. 5.2 we observe
that EPC and DOPC, which contain unsaturated fatty acid chains, have more disorder
at the bilayer center compared to DMPC and DPPC, for both of which the methyl
trough in the electron density profile is narrower and deeper, suggesting that the
methyl groups at the chain ends are better localized. Although details of this kind
may be obviated by Fourier truncation error, it nevertheless seems that the terminal
methyls could be more delocalized for lipids containing unsaturated fatty acids, in

agreement with the results of Holte et al. (1995).
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Our analysis that determines A" and K4 requires that there be no drastic struc-

tural changes over the range of P applied because extrapolation to P = 0 would then

be invalidated. The fact that the data for all P fall close to the continuous transform

in Fig. 5.4 confirms no large scale structural change. The small, systematic deviations

of the h = 2 form factors for high and low P in Fig. 5.4 are consistent with small

changes on the order of 1.5A in Dy due to osmotic compression, as can be verified by

varying the thickness in models of electron density profiles (Nagle and Wiener, 1989;

MeclIntosh and Simon, 1987; Torbet and Wilkins, 1976).

Table 5.1: Volumetric results (30°C).

DMPC EPC DOPC
My [g/mol]  677.95 7685 786.1
vr, [ml/g] 0.978 0.988 0.998
Vv, [A% 1101. 1260.6 1303.3
nt [e] 374 424.2 434
AF(0) [e] 14 8 0.001
Table 5.2: Structural results (30°C).
DMPC DMPC EPC EPC DOPC DOPC
P [atm] 0 27 0 29 0 56
D[A] 62.7 51.5 66.3 53.4 63.1 19.8
Dyy [A] 34.4° 35.2 35.4¢ 36.6 35.3¢ 36.4
A[A? 59.7 57.9 69.4 66.3 72.2 69.0
Dy [A] 36.9 38.0 36.3 38.0 36.1 37.3
Dw [A] 25.8 13.5 30.0 15.4 27.0 12.5
nyy 25.7 13.0 34.7 17.0 32.5 14.5
D¢ [A] 13.1 13.5 13.6 14.2 13.6 14.3
D [4] 44.2 45.0 45.2 46.4 45.3 46.5
Dl [A] 18.5 6.5 21.1 7.0 17.9 3.6
nw — Ny 18.4 6.3 244 7.7 21.5 4.2
Ny 7.3 6.7 10.3 9.3 11.0 10.3

® Calculated as 2(D¢ + D).
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The followig figure compares the results for DMPC and EPC. Unsaturation (in
the case of EPC) clearly leads to a larger A even if the headgroups are the same.
There is also a difference in the fully hydrated water spacing which is an indication
that interbilayer interactions (analyzed in Chapter 6) may differ from one lipid to
another. The changes in the bilayer structure are minor for the range of dehydration
that we used. The number of waters per lipid nyy is suficiently large in order to keep

the headgroup hydrated.

DMPC EPC
0 atm 27 atm 0atm 29 atm
A 59.7 57.9 69.4 66.3

- gg% 1 K, =136 dyn/cm K, =116 dyn/cm
%8% Dg 36.9 38.0 36.3 38.0

Dw 25.8 135 30.0 154

) § §§ ] K o= 0.8x10" erg K o= 0.5x10° erg
% 8 g n, | 7.3 6.7 103 93

Ny - Ny | 184 6.3 24.4 7.7

Figure 5.6: Comparison between DMPC and EPC structural parameters. The
bending modulus K, is obtained in Chapter 6.



Chapter 6

Determination of Interbilayer Interactions

6.1 Introduction

Having obtained the bilayer structure we now turn to the interbilayer interactions as
a function of the interbilayer water spacing. In Section 2.3 we derived the free energy
of interaction of bilayers in a multilamellar stack, as a function of the interbilayer

water spacing, here denoted by the symbol a for simplicity (see Eq. 2.26),

Fla) - Fla = o) = V(a) + (%) KjUQ. (6.1)

The V(a) term represents the “bare” free energy which is the interaction between
non-fluctuating membranes. The second term is the fluctuation free energy Fy; (see
Eq. 2.25). It involves the bending modulus K, and the mean square fluctuation in

2

water spacing o?. Since P = —0F/0a, it is then natural to use the partitioning of

the free energy in Eq. 6.1 to define a bare pressure and a fluctuation pressure,
P(a) = Pba,«e(a) + Pfl(a). (62)

The functional form of the fluctuation pressure,

ksT\” 1 do~2
L)—U (6.3)

Pfl(“):_< or ) K. da

can be determined experimentally from the mean square fluctuation in water spacing
02, that is obtained from the Caillé order parameter 7, using the relation

o? =n D?/n? (see Eq. 3.7).

02
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6.2 Data

Experimental data for DPPC at 50°C' in the L, (fluid) phase have been previously
reported (Nagle et al., 1996; Zhang et al., 1996) and to this we add data for EPC,
DMPC and DOPC, all at 30°C and all in the L, phase. By varying the concentration
of PVP the osmotic pressure in our samples spanned the range from P = 0 to P = 58
atmospheres.

Fig. 6.1 shows our osmotic pressure data versus D space for the four lipids. The
error in measuring D was about 0.01A. The greatest error in Fig. 6.1 is in the
osmotic pressure due to the difficulty of preparing small samples with precise polymer
concentrations. However, the scatter in the log P data is comparable to data reported
in the literature (McIntosh and Simon, 1993; Rand and Parsegian, 1989). We also
noticed systematic deviations in log P in samples prepared on two separate occasions,
as indicated for DMPC in Fig. 6.1 by the solid versus open symbols. Uncertainties
in log P for the earlier DMPC and the DPPC data were estimated as 0.3, and as 0.2
for the later DMPC, EPC and DOPC data. Another source of error is revealed in
the spacings D, for fully hydrated samples with no PVP (P = 0); the variations in
D, were substantially larger than the measuring error of 0.01A. The values of D,
are indicated in Fig. 6.1 by arrows. The sum of the squares of the residuals used in
fitting theory to the data will include the square residual of D, weighted by Agf.

As discussed in Chapter 3, the Caillé X-ray lineshape parameter 7; was converted
to o using Eq. 3.7 and the results are shown in Fig. 6.2.

To test the theories of interactions it is necessary to convert D into the interbilayer
water spacing a. As explained in Section 2.2 there are different ways of defining the
water spacing. The volumetric convention is denoted by Dy, in Fig. 1.3 and the steric
convention by Dy,. Both can be calculated, once the area per molecule A is known,
as described in Section 5.2.3. For the interbilayer separation we employ the definition
a = Dy, in Fig. 1.3 that is similar to the one used by McIntosh and Simon (1986a).
This choice of convention makes no essential difference for the two interactions that
turn out to be exponential. It reduces our estimate of the Hamaker parameter H,
but this convention makes only a small difference for the functional form of the van

der Waals interaction, since a is comfortably larger than zero.
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Figure 6.1: Osmotic pressure vs. lamellar D-spacing. In (a) the solid symbols show
data for our most recent, most carefully prepared samples and the open symbols show
earlier data. The arrows indicate D, for P,,, = 0.
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Figure 6.2: Root mean square fluctuation o vs. D, with same symbols and lipids
as in Fig. 6.1.
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Table 6.1 at the end of this chapter shows the corresponding water spacing a, for
fully hydrated samples. The large range quoted for DPPC reflects the range of D,

spacings.

6.3 Functional form of I

Inspired by Eq. 6.1 and Eq. 2.6 we plot logo~2 versus a in Fig. 6.3. The results for
all four lipids are consistent with F); following an exponential decay which can be

parameterized as

2
Fp= (%) Ki A e, (6.4)
The decay length Ay and the amplitude Ay, obtained from the plots of log o2 versus
a in Fig. 6.3 are presented in Table 6.1. We note that if the compressibility correction
to a had not been made (see Section 5.2.2), then the plots are also consistent with
an exponential decay of Fy;, but with decay lengths about 0.2A shorter. Both sets
of decay lengths are systematically greater than predicted by the soft confinement
theory presented in Eq. 2.6, as will become apparent when values of the hydration
force decay constant \ are obtained.
The dashed curves in Fig. 6.3 show the prediction for hard confinement as em-

bodied by Eq. 2.5; they simply use the basic hard confinement relation,

(0/a)* = u (6.5)

where p is a constant. The value of y has been given as 1/6 (Helfrich, 1978), 0.183
(Podgornik and Parsegian, 1992) and 1/5 (Janke and Kleinert, 1986); the value 1/6
is used in Fig. 6.3. Comparing to the data shows first that hard confinement predicts
a significant curvature in Fig. 6.3 that is not observed; in other words, the functional
form of the undulation repulsion is incorrect. Second, the dashed curve lies below
the data; raising it would require smaller values of y of order 0.05, but these values
would also have to vary with a. From this comparison we conclude that a theory of
soft confinement, such as the one given by Eq. 2.6, is required for the range of a in

our data.
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Figure 6.3: Log 0 2 vs. water spacing a. The solid lines show exponential fits. The
dashed lines show the hard confinement prediction, Eq. 2.5, and the dotted lines show
the slope for the soft-confinement prediction, Eq. 2.6.
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6.4 Decomposition of P,,, data

The exponential decay in the fluctuation free energy implies an exponential decay of
the fluctuation pressure
Pjy ~ exp /M1, (6.6)

with decay length Ay. If we know K., then Eq. 6.3 can be used to determine Pj.
Unfortunately, literature values of K. are either absent for some lipids or are uncertain
by factors of 4 for other lipids, so we first tried using K. as a fitting parameter along
with the other parameters \, P, and H in Eq. 2.3, using a routine non-linear least
squares program. For EPC the resulting parameters for this unconstrained fit are
shown in line 1 of Table 6.2.

Fig. 6.4a shows the fit to the log P data and also the decomposition into the three
component pressures. However, by holding K, fixed at other values, quite reasonable
fits to the log P data can also be obtained as shown in Fig. 6.4b. The results for the
corresponding values of the other parameters, while holding K, = 110! erg and
2 - 10~ '2erg, are shown in lines 2 and 3, respectively, in Table 6.2.

Fits for DMPC, DPPC and DOPC are shown in Figs. 6.5. Fitting results for
several fixed values of K. are shown in Table 6.2. DPPC is more complicated because
there is a wider range of a, and the earlier data have larger uncertainties in P; we
therefore give results for the two extreme values of a,.

It is clear from the previous paragraph that additional information is required to
determine the fitting parameters uniquely. One possibility is to hypothesize that the
values of some of the parameters might vary little from lipid to lipid. For example,
if the hydration pressure depends primarily upon water, then A should be nearly the
same for the four lipids. Also, the Hamaker parameter H might reasonably be ex-
pected to be nearly the same; the thickness dependence of the different bilayers is
already accounted for in first approximation by the form of Eq. 2.3 and the relative
proportion of head to tail does not vary much for these four lipids. These consid-
erations disfavor the first two fits for DPPC listed in Table 6.2 which were driven
by the smallest estimate of a,. From the last two fits we then conclude that A is
nearly 2.0A and P, is about 1 - 10° erg/cm?. These values of A\ are only about 0.1A
smaller than given by Rand and Parsegian (1989). The robustness of these values for

A and P, follows from the fact that they are primarily determined by the high P data
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where the other two pressures are small as shown in Figs. 6.4-6.5. Because we make a
compressibility correction, our A are larger than those given by McIntosh and Simon

(1993); if we did not make this correction our A would be of order 1.8A.
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Figure 6.4: The curved solid line shows the fit to log(P,sy,) versus a for EPC for the
two values of K. shown in (a) and (b). The straight solid line in each panel shows
the fluctuation pressure, the straight dashed line shows the hydration pressure and

the curved dotted line shows the van der Waals pressure. Parameter values are given
in Table 6.2.
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Figure 6.5: As in Fig. 6.4 except that panel (a) is for DMPC, panel (b) for DPPC
and panel (c) for DOPC.
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Figs. 6.4-6.5 show that the magnitude of the van der Waals pressure and the
fluctuation pressure follow each other as K, is varied, so the value H is no better
determined than the value of K.. There is, however, another criterion that can be
used to establish preferences. Let us suppose that the hydration pressure and the van
der Waals pressure are the same in the gel phase as in the L, phase, and that the
fluctuation pressure is negligible because gel phase bilayers should be stiffer with larger
K.. Then, a in the gel phase would be the value of a at which the hydration pressure
and the magnitude of the van der Waals pressure become equal; let us call this a}. The
difference Aa, = a, — a is given in Table 6.2 for the various fits. The experimental
difference in a, between L, and gel phase DPPC is 9A (Nagle et al., 1996). This favors
the larger values of Aa, in the last column of Table 6.2, i.e., smaller values of K, and
larger values of H. However, when we consider even smaller values of K. than given
in Table 6.2, the fit to the log P data deteriorates rapidly. The fact that the fitted
values of Aa, are smaller than 9A may, of course, reflect different values of some of the
parameters for the gel phase. A similar criterion comes from oriented multilayers on
solid substrates. Our most fully hydrated samples of DMPC (Tristram-Nagle et al.,
1998a) only have D spacings of 52A. Current theory (Podgornik and Parsegian, 1997)
for these much smaller D spacings is that the substrate suppresses the fluctuations
and this eliminates the fluctuational pressure. Since this should not change the other
interactions or the bilayer thickness, one would have a} = 52A — 44A = 8A, which
would give Aa, = 11A. One concern in the precise numerical value obtained from
this criterion is that it is very hard to achieve 100% relative humidity for samples
oriented on solid substrates; achieving higher humidity would, of course, reduce Aa,.

Another criterion that one might use across the four lipids is to suppose that
K. might be larger for larger bilayer thickness. However, this criterion is weakened
because EPC and DOPC have unsaturated bonds that make the hydrocarbon chains
more disordered than with saturated chains and the DPPC data were taken at higher
temperature where the bilayer should be more flexible. Indeed, data taken at different
temperatures (see Section 6.6) show that o increases with temperature. We therefore
ignore this criterion in favor of the others above.

Since our best fit to EPC gives K. = 0.55 - 10~'2erg which is similar to the value
obtained by direct measurement (Faucon et al., 1989), and gives H = 4.73 - 10 erg

in agreement with the result of Parsegian (1993), we will choose line 1 in Table 6.2.



Chapter 6. Determination of Interbilayer Interactions 62

Assuming that the corresponding value of H should be nearly the same for all four
lipids leads us to suggest that K, is about 0.50 - 10~ 2erg for DPPC at 50°C, 0.70 -
10~"2erg for DOPC at 30°C and 0.80 - 10~ '2erg for DMPC at 30°C. We note that the
latter value is closer to the most recently measured value of K. for DMPC at 25°C

than to the value measured at 30°C (Meleard et al., 1997).

6.5 B moduli

In this section we address the rather confusing issue of various compression mod-
uli that can be defined. The modulus B that enters in the compression term of
Eq. 2.1 is related to o by Eq. 2.24. It is important to appreciate that this B is a
phenomenological input parameter; as such, it should not be expected to be equal
to the thermodynamic compression modulus Br. Indeed, imposing such an equality
would ensure that the bending term in Eq. 2.1 would have no effect in determining
Br. There are several ways that one can define the thermodynamic bulk modulus.
The most straightforward is as —D(0P/0D)r. It is more convenient, however, to
consider —D(JP/da)r. Due to the compressibility of the bilayer these two ways are
not the same, but the difference is less than 6% at our highest osmotic pressure.
Using either definition, we must also divide by D as was done in converting Bj in

Eq. 2.2 to B in Eq. 2.1. We therefore define the thermodynamic modulus as

dP
Br = ———. 6.7
r da (6.7)
It is also useful to define a bare modulus
d*V (a)
B, = 6.8
b da? (6:8)
and a fluctuation modulus ,
d*Fy(a)
By=—F"~ 6.9
fl da? ( )

All derivatives are calculated at constant temperature. From Eq. 6.2 it then follows
that
Br = By + By, (6.10)

Fig. 6.6 shows these four moduli obtained from our best fit to EPC. The bare modulus
By is nearly equal to By for high P and small a because By, is relatively small. The
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relations change dramatically for larger a because By goes negative as a exceeds 17A;
this is just a different statement of the fact that the fluctuation pressure swells a
beyond a}.

Most importantly, Fig. 6.6 emphasizes our assertion above that there is no general

simple relation between B and any of the other three moduli.
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Figure 6.6: Log of various moduli as a function of a. Parametric modulus B (solid
circles from o data); thermodynamic modulus Br (solid curve); bare modulus B,
(dashed curve - when positive) and fluctuation modulus By, (dotted line).



Chapter 6. Determination of Interbilayer Interactions 64
6.6 Temperature dependence

In a study of EPC bilayers, Simon et al. (1995) advanced the hypothesis that fluc-
tuations increase with increasing T. With our high resolution X-ray method we can
easily test this by measuring the Caillé order parameter 1;. Fig. 6.7 shows X-ray
scattering data that clearly indicate an increase of the peak tail with temperature.
We monitored the fully hydrated EPC samples with focus on the fluctuations rather
than on electron density profiles and bilayer thickness, which were studied for EPC

by Simon et al. (1995).
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Figure 6.7: Comparison of h = 2 data for EPC at different temperatures. The solid
lines show the fits, which also fit the first order data (not shown), with 7, = 0.088,
0.137, 0.175 for T' = 10°C (open circles), T' = 30°C (solid squares) and 7" = 50°C
(open squares), respectively. The dashed peak shows the instrumental resolution
function.
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With the n; values obtained from the MCT fits we then calculate the mean-square
fluctuation o2 using Eq. 3.7. In Fig. 6.8 we plot the inverse mean square water space
fluctuation, 02, on a logarithmic scale versus water spacing a for samples at P = (
for T'= 10, 18,30 and 50°C. For T' = 30°C we obtained a at P = 0 as explained in
Sec. 5.2.3. For other temperatures we used the T' dependence of the bilayer thickness
of Simon et al. (1995), which was about 0.084A/°C to estimate D’; which was then
subtracted from our D to obtain a. The temperature dependence of o=2 in Fig. 6.8

clearly shows that interbilayer fluctuations increase with increasing 7.

5 10 15 20 25
a[A]

Figure 6.8: Plot of 0 2 vs. a for EPC samples under various osmotic pressures at
T = 30°C (open symbols) and for fully hydrated samples at T = 10, 18, 30 and 50°C
(solid symbols).

Fig. 6.8 also shows o2 for other samples at 7' = 30°C subject to various osmotic
pressures P. The motivation for plotting 02 on a logarithmic scale in Fig. 6.8 comes
from our result for the fluctuational contribution to the free energy given in Eq. 6.1.
Surprisingly, all 02 data appear to fit on the same line independently of temperature.
Therefore the fluctuation free energy, can be modeled by Eq. 6.4 with temperature

independent parameters Ay and Ay.
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Minimizing with respect to a the total free energy F', then gives the water spacing
a, when P = 0. Results of Simon et al. (1995) indicated only very small 7" depen-
dences of the parameters Py, A and H that, within the quoted errors could have been
constant. The estimates given for the Hamaker parameter H suggested about 10%
decrease from 5°C to 50°C, but theory suggests that H should increase (Parsegian
and Ninham, 1971). Also, the values of A~1.1A given by Simon et al. (1995) are
much smaller than other values (Rand and Parsegian, 1989), so we have used our
values of A = 1.94A, P, = 1.07-10° dyn/cm® and H = 4.73-10" ' erg as constants at
all T. Then, we have found the value of K, for which the total free energy F' has the
minimum at values of a, shown with solid symbols in Fig. 6.8. These results for K.
are presented in the second column of Table 6.3. The third column of Table 6.3 also
shows the values of K, (denoted by K,) that are predicted if K, = 0.55 - 10'2 ergs at
T = 30°C and if K. is proportional to the square of the hydrocarbon chain thickness,
which is a likely dependence for K, (Simon et al., 1995).

6.7 Discussion

Our o data, presented in Section 6.2 open a second window on interbilayer interac-
tions, as we have shown theoretically in Section 2.4, expecially regarding the fluctu-
ation pressure, for which our results are shown in Section 6.3. Our data show that a
theory of soft confinement is definitely required for biological lipid bilayers, in con-
trast to some soft condensed matter systems (Safinya et al., 1989) that were shown
to obey Helfrich’s theory of hard confinement. While the data support an exponen-
tially decaying form for the fluctuation pressure, they have a decay length Ay that is
greater than twice the decay length A of the hydration force predicted by the most
recent theory of soft confinement (Podgornik and Parsegian, 1992).

Using this extended probe of the fluctuation force, we have then attempted to
decompose the usual osmotic pressure data into component pressures without using
additional information, such as the factor of K, ! in the fluctuation pressure. Iron-
ically, the interaction that is the least well understood conceptually, the hydration
pressure, is the one that can be best determined. In this regard, it is worth noting that
other researchers have gone to much higher osmotic pressures (Rand and Parsegian,

1989; McIntosh and Simon, 1993). Because the hydration pressure is already well
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determined with the range of pressures we use, we have concentrated instead on ob-
taining more data in the lower pressure range near full hydration where the other
interactions play larger roles. One conclusion of our study is that the ability to fit the
data, even with the new constraint on the functional form of Py, indicates that the
functional forms of the hydration pressure (Eq. 2.4) and the van der Waals interaction
in Eq. 2.3 remain acceptable, though perhaps not proven.

Furthermore, as we show in Section 6.4, if either K. or the Hamaker parameter
H can be obtained from other experiments, then the remaining parameters can be
extracted. It is indeed encouraging that choosing the experimental value of K, from
Faucon et al. (1989) and Meleard et al. (1997), returns a reasonable value of H
(Parsegian, 1993) and wvice versa. However, the value of K. = 0.56 - 1072 erg from
Evans and Rawicz (1990), would favor line 1 in Table 6.2 for DMPC. Nevertheless, we
regard this study as being a stepping stone to further study rather than as providing
final answers to interbilayer interactions.

Our data were mostly for 7' = 30°C, but we explored the issue of how fluctuations
depend upon 7' for EPC by measuring the Caillé fluctuation parameter ;. Our
data directly confirm the hypothesis of Simon et al. (1995) that fluctuations increase
with increasing 7. Simon et al. (1995) also suggested that this is due to a decrease
in bending modulus K,. Assuming, following Simon et al. (1995), that the other
interactions, van der Waals and hydration force, are independent of T', our data are
consistent with a small decrease in K,.. However, we note that there is also a factor
of T? in the fluctuation pressure that plays a non-negligible role in increasing the
fluctuations. Although this factor is usually thought to be negligible, it can cause
a substantial increase in water spacing a at full hydration (P = 0) because the
minimum in the bare interbilayer potential is so shallow. As shown in Table 6.3 the
T dependence of K, is a little less than if K. scaled as the square of the hydrocarbon
chain thickness as measured by Simon et al. (1995). Therefore, our direct data for
the T dependence of the fluctuations are basically consistent with the overall picture

of T dependence of interbilayer interactions proposed by Simon et al. (1995).
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Table 6.1: Parameters obtained from X-ray data. The units are A for D%, a,, and
Ap, and A7% for Ay .

Lipid DIB (0% Afl )\ﬂ

DMPC 44.0 18.7 1.08 + 0.13 5.1 +0.2
EPC 45.4 20.9 0.59 £+ 0.08 5.9 + 0.3
DPPC 47.2 20.0/19.0 0.37 = 0.03 6.0 £ 0.3
DOPC 45.3 17.9 0.47 + 0.08 5.8 £ 0.5

Table 6.2: Parameter values for several fits to log P data. The units are K, [10~"%erg];
Py, [10%rg/cm?®]; H [10~"erg] and A, a, and Aq, are in A.

Lipid K. P, A H al’ Aa,
EPC 0.55 1.07 1.94 4.73 20.9 7.4
1.00 0.91 1.99 2.81 21.0 5.6
2.00 0.81 2.03 1.65 21.0 3.7
DMPC 0.50 1.32 1.91 7.13 18.8 6.3
0.80 1.13 1.97 4.91 18.8 5.0
1.30 1.01 2.01 3.50 18.9 3.7
DPPC 0.50 0.63 2.36 9.19 16.0 2.3
1.00 0.58 2.39 7.41 16.0 1.3
0.50 0.99 1.97 4.78 18.0 4.5
1.00 0.92 1.97 2.87 18.1 3.1
DOPC 0.40 0.68 2.14 6.51 17.9 4.8
0.70 0.55 2.22 4.72 17.8 3.3
1.00 0.50 2.26 4.02 17.8 2.5

Table 6.3: Temperature dependence of bending modulus K. for EPC. UnitsAof K.
are 107'2 erg. K, was obtained from fitting the water spacing at P = 0, and K, was

obtained assuming quadratic dependence upon hydrocarbon chain thickness.

~

T [°C] K, K,

10 0.61 0.62
18 0.57 0.59
30 0.55 0.55
50 0.53 0.50




Chapter 7

Concluding Remarks

One accomplishment of this work is the elaboration of a consistent interpretation of
P(Dy) and o(Dy ) data. This required a careful consideration of the de Gennes -
Caillé model for smectic systems. The model involves the phenomenological fluctua-
tion parameters K, and B(Dy/). While the bending modulus K, is well defined, the
compression parameter B(Dy) is a more complex quantity. It depends on the water
spacing Dy, and therefore its functional form needs to be specified. Evidently, there
must be a connection between B(Dyy) and the bare interaction V(Dy), which is the
interaction between non-fluctuating membranes. However, due to the complexity of
the membrane system, the two are connected in a non-trivial way. Direct theoretical
approaches had little success. In Chapter 3 we show that by measuring the Caillé pa-
rameter 7;, we essentially measure the compression parameter B(Dy ). Therefore we
were able to subtract the fluctuation contribution from the osmotic pressure curves
and obtain the bare interaction V(Dy/). We have then shown (Chapter 6) that in-
deed, the bare interaction can be represented as a sum of a van der Waals attraction
term and an exponentially decaying repulsive term. The interaction parameters that
we obtain are in agreement with other measurements. These other measurements
either suppress fluctuations, as in the measurement of the van der Waals interaction
between bilayers on mica surfaces, or lack interbilayer interactions, as in the optical
measurement of the bending modulus K, of large unilamellar vesicles. The procedure
described in this work allows for a simultaneous determination of the interbilayer
interactions together with the determination of the bilayer structure.

Another accomplisment is the determination of the structural parameters, which

form a basis for the understanding of complex lipid mixtures in the biomembrane
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systems. By varying the lipid composition, the biomembranes can adjust their physi-
cal properties, especially the fluidity, to permit the membrane proteins to function in
their optimum regime. Our analysis of diffraction data revealed the dependence of the
structural parameters on the chemical composition of the lipid bilayer. In particular,
the central quantity A (area per lipid) is shown to be very sensitive to the acyl chain
composition even for the same lipid headgroup. Unsaturation, as in the case of fluid
DOPC, leads to a 20% larger A relative to fluld DMPC at the same temperature.

By using the osmotic stress technique we have probed the elasticity of lipid bi-
layers. The lipid bilayers respond to water loss by a slight decrease in the area per
molecule, that accompanies the major effect of Dy, reduction. However, the bilayer
structure remains stable even for our most dehydrated samples. As summarized in
Table 5.2 this level of osmotic stress does not alter the headgroup solvation (nf)
significantly.

Accurate measurements of structural and interaction parameters provide a reliable
experimental basis for computer simulations of lipid membranes. With precise values
for these parameters, simulators can test their potential functions and focus their
effort to obtain information that is experimentally inaccessible. Some suggestions
have been indicated in this work, whenever less than obvious assumptions have been
employed (e.g. page 49). Therefore, the results of this work are subject to revisions
when feedback is available. We made, nevertheless, significant progress toward a more

accurate description of lipid membranes.
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Appendix A

Continuum vs. discrete descriptions

A.1 The models

In this appendix we will focus on the fluctuational part of the interactions.

Discrete Hamiltonian. This is the description used in the present work.

2 2
0“u,  O0°uy,

N-1 1 2 1 )
er = /dx/ dy nzzo |:§KC (W + 8y2 ) + §B (un+1 — un)

(A1)

B has units of erg/em*. The second term of the Hamiltonian assumes that there is
a compression energy that is a harmonic function of the local interbilayer separation.

The expectation value of the compression energy per unit area of one bilayer is

(Hy™) = 5B, (A2)
where
= (e — ) = 2T (4.3
The calculation of ¢ has been done using the Fourier expansion:
u(z,y,n) = > U(Qu. Qy, Qz)eiQ'ﬁ (A.4)

Qm’Qy:Qz
with B = 7+ nD? and the vectors Cj taking values in the first Brillouin zone defined
by the in-plane molecular size a for )., @), and by the membrane spacing D for @),:

2 T
— < L < = .
Q. <%

- (A.5)

Continuum Hamiltonian. If only long wavelength fluctuations are allowed,

then the system can be treated as a continuum. In particular, the compression term
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can be written as a derivative:

1 Pu  Pu) 1 ou\’
H, = /dx/dy/dz [aK (@“La—y?) + 5By (5” (A.6)

3. This is how the Hamiltonian is introduced by de Gennes

Bs has units of erg/em
(1974). Long wavelength fluctuation means that the fluctuations of interest occur at

a scale A, that is much larger than the interbilayer separation D,

A=

™
> D, A7
szam ( )

This (unknown) scale introduces a cutoff for the @, vectors,

™ ™
<< —. A.
Q. <+ < D (A.8)

The expectation value of the compression energy per unit volume is

(™) = By <<?)> (A.9)

therefore the appropriate definition of the interbilayer spacing mean-square fluctua-

tion is (Evans and Parsegian, 1986),

ol = D2<<%>2>. (A.10)

Comparing with Eq. A.2, the correspondence between B; and B is simply
B; = DB. (A.11)

The calculation of 02 depends on the cutoff A. If we let A = /D we obtain

2 7TkBT 1
o = —

¢ 2 8 JK.B

2
c

(A.12)

This gives the right dependence of ¢. on the interaction parameters K. and B but
the numerical factor is not reliable. The advantage of the continuum Hamiltonian
is that it allows for much simpler calculations of quantities dominated by the large
scale fluctuations of the system (and one should only use the continuum Hamiltonian
to describe the properties of the system at large scale). Most of the calculation can

be done analytically and the results can be put in a simple form without further
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approximations. For example, the asymptotic form (z — oo) of the interbilayer

correlation function

A?(2) = ((u(0,0,2) — u(0,0,0))? (A.13)

can be easily obtained by ignoring the cutoff in @), (Caillé (1972) takes @ ,maz —> 0).
MCT (Zhang et al., 1994) puts a cutoff at the edge of the first Brillouin zone
(Eq.A.5),

szam = (A14)

SIE

in order to avoid divergencies.

However, irrespective of the value of the cutoff, a theory built on the Hamiltonian
introduced by Eq. A.6 is a continuum theory. The phenomenological parameter Bj
is in principle a function of the cutoff A. One can integrate over high modes in order
to renormalize B3. The advantage of the discrete Hamiltonian is that the problem of
the cutoff no longer exists and B is well defined.

The two Hamiltonians, discrete and continuum, describe the long wavelength prop-
erties of the system equally well. This can be easily seen by comparing the energy
per mode in each case. Expressing everything in terms of K. and B we have, for the

discrete case (d),

4 Q.D
_ 4 2 2 (e
hd == Kch + D Bﬁ sSin < 9 > s (A15)
and for the continuum (c),
h. = K.Q! + D*BQ?. (A.16)

Eq. A.16 is the long wavelength limit (Q,D/2 < 7/2) of Eq. A.15. Consequently,
the correlation function at z > D is practically the same, while at z = D they differ
by about 25%. This difference does not affect the X-ray line shape, as we will show

next.

A.2 The X-ray correlation function
The interbilayer correlation function,
A*(k) = ((u(w,y, 2) — u(z,y,0))%), (A.17)

for a stack of N membranes with spacing D and size L, = N D has been calculated us-

ing periodic boundary conditions. The results for the discrete (d) and the continuum
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(c) are
kgT 1
2 . B
kgT 1
A?(k — = 2.(k A19
) = p g Tl (4.19)
with
N/Zq _ (og 2mik
=1 N
N/2q _ 2mjk
(N k) = SN (A.21)

j=1 J

The two functions ¥, and Y., calculated in the limit N — oo are compared in
Fig. A.1. They both have the same logarithmic dependence with the distance, but
they differ by a constant everywhere. The continuum gives (Caillé, 1972; Zhang et
al., 1994)

Ye(k) = v+ In(rk), (A.22)

where v ~ 0.577 is the Euler constant, while the discrete model gives
3
Yo (k) ~ 37 + In(7k). (A.23)

Fig. A.1 also shows the point at k¥ = 1 (open diamond symbol) that corresponds
to the result in Eq. A.12. The discrepancy at £k = 1 generates an inconsistency in
interpretation of the nearest neighbor root mean square fluctuation .. On the other
hand, in the discrete description, the assignment 0 = A,4(1) is natural and satisfies
Eq.A.2 by construction.

The scattering profile (Eq. 3.14), however, is predicted to be practically the same,
since the two correlation functions shown in Fig. A.1 have the same functional form.
This is confirmed in Fig. A.2 which shows the structure factor of a single domain of
size L = 3000A, with D = 60A and 7, = 0.1. The dashed lines show the expected

power law decay of the peak tails.
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Figure A.1: Comparison of the interbilayer correlation functions ¥; and X..
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Figure A.2: Theoretical peak profile for a single scattering domain with L = 30004,
D = 60A, and i, = 0.1. Open symbols: discrete model. Solid line: continuous model.
Dashed line: expected power law behavior.



Appendix B

Integration over undulation modes

For the calculation of the free energy (Eq. 2.13) and of the mean square fluctua-
tion (Eq. 2.20), the summations over the fluctuation modes have been replaced with

integrals using
1

L.L,

>

Qz:Qy

1 1
=5 [ dQudQ, = [ (@), (B.1)

This is justified for large membranes, i.e. L,, L, > a, where a = 7A is the intermolec-
ular distance. In both cases the integrand decays as @Q;* at large @, and therefore

polar coordinates can be used (i.e. the membrane shape is irrelevant). With the
4Bsin? Q.D/2
K

c

notations ¢t = Q% and ¢* = the integral in Eq. 2.13 requires

2 2
I, = /dt In <1+§—2> =tIn (1—1—;—2) + 2 ¢ atan(t/c), (B.2)
and the integral in Eq. 2.20 requires

1 1
12 = /dt m = E atan(t/c). (B?))

B.1 The cutoff at low (),

The quantity c in Egs. B.2 and B.3 plays the role of a cutoff for small . The integral

gives the same result as the finite summation if the following condition is satisfied
For the most unfavorable case, namely for (), = @ ,min, this requires
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With the notation
A=/K./BD2, (B.6)

we have the condition

LoL, > L.\, (B.7)

For the systems considered in this work X is of the order of 10—10%A, L, ~ 103 —10*A
and L, ~ L, ~ 10*A. Therefore condition Eq.B.7 is easily satisfied.

B.2 Integration limits

The lower limit can be set to zero when ¢ > t,,;,. The upper limit is

2 /.2
tmax tmax — /a

¢ " o 2/(AD)

~ 10? (B.8)

giving atan(t,,../c) = 7/2.

B.3 Summation vs. integral

Consider the sum:
N/2

1 1
DIN) = %2 7y (B.9)
n=1 SIn (W)
with the approximation:
1 N2
S(N) = ¥ > — (B.10)
- N
n=1 ( )
and the integral form:
1 f7/2 dt N —2
IN:—/ A B.11
(V) 7 Ja/N 12 w2 ( )

The ratio r(N) = I(N)/S(N) does not approach 1 for large N, but some value around
6/m2, that can be estimated using Euler-Maclaurin summation formulae. The exact
value of 7(NV) is not important, rather, it is the fact that the approximation with an
integral gives, in this case, a 60% deviation in the final result.

Now let us introduce a cutoff ¢ and compare:
N/

1 2
D.(N) = an::l sin? (22 + 2

(B.12)

S —
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and
| N2 1
- Z (B.13)
5 () 4
with 2
1 pm/2 dt 1 t\|"
L(N) = —/ — atan (—) (B.14)
mJon 242 wce c/lx/n
The ratio 7.(N) = I.(N)/S.(N) approaches 1 for
> (B.15)

N

The summation over @, is mathematically similar, the compression term
4Bsin®*(Q,D/2)/K, playing the role of the cutoff c. We have therefore shown that
the approximation with an integral (Eq. B.1) is admissible if ¢ > 7/N.



Appendix C

MCT fitting program

C.1 Overview

The Modified Caillé Theory (Zhang et al., 1994) is used to fit high resolution low
angle X-ray scattering data for unoriented multilamellar lipid membranes in the fluid
phase. MCT fits all diffraction peaks simultaneously. Two data files may be used
for each peak: we usually have a broad scan of total width ~ 0.2 deg in 26, and a
fine scan of total width ~ 0.02 deg. Backgrounds can be subtracted prior to fit or
modeled by analytical functions.

MCT starts by reading an initialization file, one sample per run. The output
consists of three files that contain the sorted data, the fitting profile and the fit
progress report. If needed, the initialization file and MCT input/output formats can
be easily adjusted.

The following functions must be determined before using MCT :

1. Resolution function (depends on actual experimental set-up)
2. Background function (depends on actual experimental set-up)
3. Correlation function (provided in file Delta.inf)

The minimization procedure is the standard Levenberg-Marquardt algorithm exe-
cuted by the subroutine LMDER, of MINPAK by Garbov et. al (1980). Fitting errors
are estimated from the inverse of the x? curvature matrix. In the current program
version the inverse matrix is calculated using the IMSL library function DLINRG. If

no IMSL access, edit mct.f, search for imsl and follow the instructions.

81



Appendix C. MCT fitting program 82

The MCT package contains the following files:

mct.f
1922s.par
cas7.19
cas7.20s
cas7.21
cas7.22s
ck1922s.dat
ck1922s.fit
ck1922s.chi
Delta.inf

77 source file

MCT initialization file template

sample data file (broad scan h=1)

sample data file ( fine scan h=1)

sample data file (broad scan h=2)

sample data file ( fine scan h=2)

copy of output file 1922s.dat (for after run check)
copy of output file 1922s.fit

copy of output file 1922s.chi

correlation function input file
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C.2 DMCT fitting function

C.2.1 Experimental peak profile

q:1+3sa

dq, Ry(qy)R.(q. — €,) (Sn(\/d? + ¢?))r-
(C.1)

F}, is the scattering form factor and K is an overall scale (includes various normal-

1,0,0.0.) = K |\ [ de, |

3
0 4z—3sa

ization factors that are independent of h for a given sample).

R, is the longitudinal resolution function and is modeled as
(C.2)

The parameters sg, s;, and ay, are obtained by fitting to the experimental longitudinal
resolution function. The out-of-plane resolution function is modeled by a Gaussian
function, R,(q,) = e~%:/25%  with s, determined from the out of plane angular accep-
tance of the sample and detector slits. The transverse in-plane resolution function
R,(qy) is treated as a delta function.

The average structure factor is obtained by integrating over the domain size dis-
tribution P(L):

L azxr

(Swae = [ " dL P(L) Su(a, L) (€.3)

Limin
with P(L) = exp(—L/oy).

Note: oy, is only the notation used in the fitting program, the notation Lg is
otherwise used.

The parameter oy is an MCT fitting parameter (elsewhere denoted by Lg) to-
gether with the Caillé parameter 7, the peak positions 26, the overall amplitude
K|F?| and the intensity ratios r, = |F,[*/|FZ|. A Gaussian instead of an exponential
was used in the original Zhang program. After much experience, it was found that

the simpler exponential form worked just as well (see Chapter 3).
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C.2.2 Theoretical peak profile

Structure factor for a single domain of size L = ND:

2 [ N .
Sn(q, L) = Z LAIN 42> Gulzi)(N — k) cos((q — qn)zr) with z, = kD.
k=1
(C.4)
Interbilayer correlation function:
_hZ 2 A2 9
Ga(z) = e TR i g = 2T (C.5)

D

A?(k) is the asymptotic form of the mean square fluctuations of the distance between
bilayers n and n + k. It is obtained from the fluctuation function for a system of N

bilayers with PBC in the limit N — oo.

2 N2 1 — cos 2mize
A2 N = — __~ ND C.6
PBC’( :Zk) q% ; %sin% ( )
2 2 2m
A*(zr) = Appe(N =00, 2;) = ?2(1‘3) (C.7)
1

Y.(k) denotes the sum in Eq. C.6 in the limit N — oo. Combine Eq. C.5 and Eq. C.7
to obtain
2

The asymptotic form of the correlation function Gj(2x) depends on 7; and on the
bilayer index k only. The advantage of using the asymptotic form for data fitting is

that the universal function (k) is calculated only once and stored in a database.
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C.3 Initialization file instructions

The program will ask for the name of this file. The sample file in this package is
named 1922s.par. See this sample file while studying these instructions. Also, see the

more extended comments in Section C.3.2 that follow these skeletal instructions.

C.3.1 Entries

This file must have exactly the number of lines shown in the sample file.
‘ 1. Data files. ‘

Two files per peak in increasing order of peak index. Needs exactly 8 entries.

Use dummy file if needed.
‘2. Output ﬁles.‘

Three entries in this order:
Chi-file (log file)
Data file (for compact output)
Fit file.
3. Number of data points.‘

Enter number of data points for each peak. Enter 0 if no peak.
Sum must not exceed M,,,, which is set to 300 in the current version of the

program.

‘ 4. Resolution. \

The longitudinal in-plane resolution function R,(26) is interpolated using a sum
of a Gaussian (G) and a Lorentzian (L) function. The transverse in-plane resolution
function R,(q,) is assumed Gaussian (see Section C.3.2).

Enter:
sq = width of G (in degrees)
sy, = width of L (in degrees)
ar, = Amplitude of L relative to G
s, = out of plane width (assumed Gaussian) (in degrees)
X-ray wavelength
Name of 3(k) database
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‘ 5. Background. ‘

Linear in this case. bgd = Apzq * two-theta + Bygq.
Enter Abgd and Bbgd-

‘6. Starting parameters. ‘

(free = 1, fixed = 0) First block of 10 lines contains 1/0 digit and parameter

description. (The parameter description is not read by the program.)

P1..P4 = peak positions 26,
P5 = overall amplitude (instrumental scale)
P6..P8 = intensity ratios relative to the first peak
See note about Lorentz correction.
P9 = C(aillé parameter 7,
P10 = o, = Decay length (width) of P(L)

Second block. Enter initial (or fixed) values in corresponding order.

‘7. D-space from ‘

Enter peak order to use to determine D.
8. P(L) mode

Enter O for fixed integration limits or non-zero scale for adjustable L,,,, =scale*o7,.
9. P(L) limits

Enter (integer = number of bilayers):
Smallest domain size Ly,
Maximum domain size L,q;

Integration step
10. Fit/Control

1 for minimization, O for no minimization (check initial parameters)

‘11. Fitting errors

Enter O to skip the calculation of error matrix.
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C.3.

and

[6]

2 Comments

File name lengths are limited by the size of variables fileh, filechi, filedat and
filefit.

The number of data points for each peak can have any value between 0 and
M 4., but the total sum cannot exceed M,,,, which is set to 300 in current
versions of the program. Also, data should be within +0.25 degrees in two-
theta near each peak. The limit is imposed by the index Mq and the scale dim
and keeps a safe margin for the convolution with the resolution function. This
limit is a compromise between:

(a) MCT theory assumes a constant form factor across the peak, therefore the
narrower the peak the better, and

(b) Data should not be confined around the central peak, which is defined by
the resolution function, but should include ”enough tail”. Usually our data do

not exceed +0.15 degrees from the peak.

This is crucial input for this analysis. If you don’t know your instrumental
resolution function or if the peaks are not fully resolved, then don’t bother

using this program.

The function used ( ¢ stands for two-theta ):

R.(t) = A (G(t) + ar, L(t)) — dp,

with G(t) = exp(—(t — t9)?/(25%) and L(t) = 1/[1 + (¢t — t9)?/s2].
Three relevant parameters: sg, s;, and ay,.

Three irrelevant parameters: A, to and d, (detector baseline).

The out-of-plane resolution function (determined by the slits acceptance) is con-
sidered Gaussian, R;(q,) = exp(—¢2/(2s2)). The transverse in-plane resolution

R,(qy) is considered as a delta function.

Our background is well modeled by a linear function. Other functions can be
easily incorporated. Alternatively, the background can be subtracted from data

prior to fit and then A,y and Byyq can be set to zero.

Initialization of peak positions P1..P4 should be made as close as possible to

the actual peak. Calculation of the corresponding Jacobian part uses a shortcut
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(related to the convolution with the resolution function) that does not work too
far from the peak. In our experiments at CHESS we found that the peak value
of 26}, did not index perfectly with h and the error was random. We documented
that this was due to small mechanical hysteresis in the 26 arm. This requires
separate values of 26, to run this fitting program, but the corresponding error

in D-spacing is negligible.

The Lorentz correction (= h?) should be included upon input, although input
parameter accuracy is not so important as for 260,. However, it is important
to note that output for P6..P8 are intensity ratios that have been Lorentz

corrected and fluctuation corrected.

The P(L) parameter o;, depends on the sample preparation. It is roughly the
average scattering domain size in the limit of very large L,,,,. It can be set to

a couple of thousand angstroms estimated from the peak width.

Ideally, if there is no slit smearing, all strong peaks should give precisely the
same D-spacing. The program requires one to choose which peak to use for D.

This entry allows for a choice of the significant peak.

and @ Allow for a variation of L,,,, which is not a true fitting parameter. The relevant
parameters, 1; and the intensity ratios, should not be very sensitive to L.
once L, is reasonable. Do a preliminary fit with large steps (dL = 10 — 20)

and scale = 3 — 6 to get rough estimates of the fitting parameters.
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